Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser–plasma Interactions

Download Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser–plasma Interactions PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser–plasma Interactions by :

Download or read book Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser–plasma Interactions written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser{u2013}plasma Interactions

Download Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser{u2013}plasma Interactions PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser{u2013}plasma Interactions by :

Download or read book Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser{u2013}plasma Interactions written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron sheath field confinement on electron dynamics. X-ray emission due to energetic electrons was imaged using a K? imaging crystal. Electrons were observed to travel along the surface of wire targets, and were slowed mainly by the induced fields. Targets with reduced surface areas were correlated with increased hot electron densities and proton energies. Furthermore, Hybrid Vlasov–Fokker–Planck simulations demonstrated increased electric sheath field strength in reduced surface area targets.

On the Acceleration and Transport of Electrons Generated by Intense Laser-Plasma Interactions at Sharp Interfaces

Download On the Acceleration and Transport of Electrons Generated by Intense Laser-Plasma Interactions at Sharp Interfaces PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 250 pages
Book Rating : 4.:/5 (17 download)

DOWNLOAD NOW!


Book Synopsis On the Acceleration and Transport of Electrons Generated by Intense Laser-Plasma Interactions at Sharp Interfaces by : Joshua Joseph May

Download or read book On the Acceleration and Transport of Electrons Generated by Intense Laser-Plasma Interactions at Sharp Interfaces written by Joshua Joseph May and published by . This book was released on 2017 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: The continued development of the chirped pulse amplification technique has allowed for the development of lasers with powers of in excess of $10^{15}W$, for pulse lengths with durations of between .01 and 10 picoseconds, and which can be focused to energy densities greater than 100 giga-atmospheres. When such lasers are focused onto material targets, the possibility of creating particle beams with energy fluxes of comparable parameters arises. Such interactions have a number of theorized applications. For instance, in the Fast Ignition concept for Inertial Confinement Fusion \cite{Tabak:1994vx}, a high-intensity laser efficiently transfers its energy into an electron beam with an appropriate spectra which is then transported into a compressed target and initiate a fusion reaction. Another possible use is the so called Radiation Pressure Acceleration mechanism, in which a high-intensity, circularly polarized laser is used to create a mono-energetic ion beam which could then be used for medical imaging and treatment, among other applications. For this latter application, it is important that the laser energy is transferred to the ions and not to the electrons. However the physics of such high energy-density laser-matter interactions is highly kinetic and non-linear, and presently not fully understood. In this dissertation, we use the Particle-in-Cell code OSIRIS \cite{Fonseca:2002, Hemker:1999} to explore the generation and transport of relativistic particle beams created by high intensity lasers focused onto solid density matter at normal incidence. To explore the generation of relativistic electrons by such interactions, we use primarily one-dimensional (1D) and two-dimensional (2D), and a few three-dimensional simulations (3D). We initially examine the idealized case of normal incidence of relatively short, plane-wave lasers on flat, sharp interfaces. We find that in 1D the results are highly dependent on the initial temperature of the plasma, with significant absorption into relativistic electrons only possible when the temperature is high in the direction parallel to the electric field of the laser. In multi-dimensions, absorption into relativistic electrons arises independent of the initial temperature for both fixed and mobile ions, although the absorption is higher for mobile ions. In most cases however, absorption remains at $10's$ of percent, and as such a standing wave structure from the incoming and reflected wave is setup in front of the plasma surface. The peak momentum of the accelerated electrons is found to be $2 a_0 m_e c$, where $a_0 \equiv e A_0/m_e c^2$ is the normalized vector potential of the laser in vacuum, $e$ is the electron charge, $m_e$ is the electron mass, and $c$ is the speed of light. We consider cases for which $a_0>1$. We therefore call this the $2 a_0$ acceleration process. Using particle tracking, we identify the detailed physics behind the $2 a_0$ process and find it is related to the standing wave structure of the fields. We observe that the particles which gain energy do so by interacting with the laser electric field within a quarter wavelength of the surface where it is at an anti-node (it is a node at the surface). We find that only particles with high initial momentum -- in particular high transverse momentum -- are able to navigate through the laser magnetic field as its magnitude decreases in time each half laser cycle (it is an anti-node at the surface) to penetrate a quarter wavelength into the vacuum where the laser electric field is large. For a circularly polarized laser the magnetic field amplitude never decreases at the surface, instead its direction simply rotates. This prevents electrons from leaving the plasma and they therefore cannot gain energy from the electric field. For pulses with longer durations ($\gtrsim 250fs$), or for plasmas which do not have initially sharp interfaces, we discover that in addition to the $2 a_0$ acceleration at the surface, relativistic particles are also generated in an underdense region in front of the target. These particles have energies without a sharp upper bound. Although accelerating these particles removes energy from the incoming laser, and although the surface of the plasma does not stay perfectly flat and so the standing wave structure becomes modified, we find in most cases, the $2 a_0$ acceleration mechanism occurs similarly at the surface and that it still dominates the overall absorption of the laser. To explore the generation of relativistic electrons at a solid surface and transport of the heat flux of these electrons in cold or warm dense matter, we compare OSIRIS simulations with results from an experiment performed on the OMEGA laser system at the University of Rochester. In that experiment, a thin layer of gold placed on a slab of plastic is illuminated by an intense laser. A greater than order-of-magnitude decrease in the fluence of hot electrons is observed when those electrons are transported through a plasma created from a shock-heated plastic foam, as compared to transport through cold matter (unshocked plastic foam) at somewhat higher density. Our simulations indicate two reasons for the experimental result, both related to the magnetic field. The primary effect is the generation of a collimating B-field around the electron beam in the cold plastic foam, caused by the resistivity of the plastic. We use a Monte Carlo collision algorithm implemented in OSIRIS to model the experiment. The incoming relativistic electrons generate a return current. This generates a resistive electric field which then generates a magnetic field from Faraday's law. This magnetic field collimates the forward moving relativistic electrons. The collisionality of both the plastic and the gold are likely to be greater in the experiment than the 2D simulations where we used a lower density for the gold (to make the simulations possible) which heats up more. In addition, the use of 2D simulations also causes the plastic to heat up more than expected. We compensated for this by increasing the collisionality of the plasma in the simulations and this led to better agreement. The second effect is the growth of a strong, reflecting B-field at the edge of the plastic region in the shock heated material, created by the convective transport of this field back towards the beam source due to the neutralizing return current. Both effects appear to be caused primarily by the difference is density in the two cases. Owing to its higher heat capacity, the higher density material does not heat up as much from the heat flux coming from the gold, which leads to a larger resistivity. Lastly, we explored a numerical effect which has particular relevance to these simulations, due to their high energy and plasma densities. This effect is caused by the use of macro particles (which represent many real particles) which have the correct charge to mass ratio but higher charge. Therefore, any physics of a single charge that scales as $q^2/m$ will be artificially high. Physics that involves scales smaller than the macro-particle size can be mitigated through the use of finite size particles. However, for relativistic particles the spatial scale that matters is the skin depth and the cell sizes and particle sizes are both smaller than this. This allows the wakes created by these particles to be artificially high which causes them to slow down much faster than a single electron. We studied this macro-particle stopping power theoretically and in OSIRIS simulations. We also proposed a solution in which particles are split in to smaller particles as they gain energy. We call this effect Macro Particle Stopping. Although this effect can be mitigated by using more particles, this is not always computationally efficient. We show how it can also be mitigated by using high-order particle shapes, and/or by using a particle-splitting method which reduces the charge of only the most energetic electrons.

Frontiers in High Energy Density Physics

Download Frontiers in High Energy Density Physics PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 030908637X
Total Pages : 177 pages
Book Rating : 4.3/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Frontiers in High Energy Density Physics by : National Research Council

Download or read book Frontiers in High Energy Density Physics written by National Research Council and published by National Academies Press. This book was released on 2003-05-11 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.

Laser-Plasma Interactions

Download Laser-Plasma Interactions PDF Online Free

Author :
Publisher : Taylor & Francis
ISBN 13 :
Total Pages : 336 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Laser-Plasma Interactions by : Dino A. Jaroszynski

Download or read book Laser-Plasma Interactions written by Dino A. Jaroszynski and published by Taylor & Francis. This book was released on 2009-03-27 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents diagnostic methods, experimental techniques, and simulation tools used to study and model laser-plasma interactions. This book discusses the basic theory of the interaction of intense electromagnetic radiation fields with matter.

Investigations of Field Dynamics in Laser Plasmas with Proton Imaging

Download Investigations of Field Dynamics in Laser Plasmas with Proton Imaging PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642150403
Total Pages : 126 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Investigations of Field Dynamics in Laser Plasmas with Proton Imaging by : Thomas Sokollik

Download or read book Investigations of Field Dynamics in Laser Plasmas with Proton Imaging written by Thomas Sokollik and published by Springer Science & Business Media. This book was released on 2011-01-12 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser-driven proton beams are still in their infancy but already have some outstanding attributes compared to those produced in conventional accelerators. One such attribute is the typically low beam emittance. This allows excellent resolution in imaging applications like proton radiography. This thesis describes a novel imaging technique - the proton streak camera - that the author developed and first used to measure both the spatial and temporal evolution of ultra-strong electrical fields in laser-driven plasmas. Such investigations are of paramount importance for the understanding of laser-plasma interactions and, thus, for optimization of laser-driven particle acceleration. In particular, the present work investigated micrometer-sized spherical targets after laser irradiation. The confined geometry of plasmas and fields was found to influence the kinetic energy and spatial distribution of accelerated ions. This could be shown both in experimental radiography images and and in numerical simulations, one of which was selected for the cover page of Physical Review Letters.

Femtochemistry VII

Download Femtochemistry VII PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080466826
Total Pages : 611 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Femtochemistry VII by : Michele Kimble

Download or read book Femtochemistry VII written by Michele Kimble and published by Elsevier. This book was released on 2006-10-03 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Femtochemistry VII presents the most recent developments in femtochemistry and highlights the significance of the field today. This book contains extracts from the proceedings, presentations and posters from the Femtochemistry VII conference, held in Washington D.C., on July 17-22, 2005. The stimulating conference was opened by Professor Ahmed Zewail (1999 Nobel Prize Winner), and as was evident by the attendees at the conference, had a very active program with the presentation of numerous talks and a large number of posters. This collection of papers reflects the remarkable progress that has been made in femtosecond spectroscopy, and especially to its emergence as a field of research devoted to chemistry and biology, giving rise to femtochemistry and femtobiology. Subjects covered include imaging, structural dynamics, and spectroscopies, fundamentals of reaction dynamics, salvation phenomenta, liquids and interfaces, aggregates/particles/surfaces, protein dynamics and photobiology, quantum control, and intense laser-matter interactions. Subjects covered by this book include imaging, structural dynamics, and spectroscopies; fundamentals of reaction dynamics; salvation phenomenta; liquids and interfaces; aggregates/particles/surfaces; protein dynamics and photobiology; quantum control; and intense laser-matter interactions. This book would appeal to chemists, physicists and biologists in the fields of atomic and molecular science. * Contains the most recent developments in Femtochemistry from the Femtochemistry VII conference* Highlights the significance of femtochemistry today* Displays extracts from the proceedings, presentations and posters from the conference

Study of Escaping Electron Dynamics and Applications from High-power Laser-plasma Interactions

Download Study of Escaping Electron Dynamics and Applications from High-power Laser-plasma Interactions PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (141 download)

DOWNLOAD NOW!


Book Synopsis Study of Escaping Electron Dynamics and Applications from High-power Laser-plasma Interactions by : Dean Richard Rusby

Download or read book Study of Escaping Electron Dynamics and Applications from High-power Laser-plasma Interactions written by Dean Richard Rusby and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, high intensity laser-matter interactions (> 1018 W/cm2) have been shown to produce bright, compact sources of many different particles. These include x-rays, neutrons, protons and electrons, which can be used in applications such as x-ray and electron radiography. The potential use of these sources for industrial applications is promising. However, the scalability and tuning of the sources needs to be understood at a fundamental level. This thesis reports on three aspects of the development and application of these sources; the first two discuss applications of laser-plasma interactions. Firstly, the generation, characterisation and tunability of high-energy x-rays (= 200 keV) produced by the hot-electrons generated inside a solid target for the application of x-ray radiography. The characterisation of the x-ray source is conducted using a novel scintillator based absorption spectrometer. This source of x-rays was then used to radiograph a high density test object. Secondly, a novel technique of x-ray backscatter is investigated numerically and demonstrated experimentally for the first time on a laser facility. This uses the high energy electrons generated via wakefield acceleration to probe deeper into materials than traditional backscatter techniques. Finally, an investigation is reported examining the fundamental dynamics of electrons escaping from solid targets under different irradiation conditions. Experimentally, the number of escaping electrons was shown to maximise for certain laser illumination conditions; this was also explored using PIC simulations. The new results discussed in these three sections produce important new understanding of laser-driven x-ray generation and its application to penetrative probing and imaging for possible future industrial applications as well as the understanding of escaping electron dynamics.

Laser-plasma Interactions and Hot Electron Generation in Inertial Confinement Fusion

Download Laser-plasma Interactions and Hot Electron Generation in Inertial Confinement Fusion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 101 pages
Book Rating : 4.:/5 (961 download)

DOWNLOAD NOW!


Book Synopsis Laser-plasma Interactions and Hot Electron Generation in Inertial Confinement Fusion by : Jun Li

Download or read book Laser-plasma Interactions and Hot Electron Generation in Inertial Confinement Fusion written by Jun Li and published by . This book was released on 2016 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis studies several problems related to hot (energetic) electron generation in laser-plasma interactions in inertial confinement fusion (ICF). We study laserplasma instabilities (LPI) that can generate hot electrons in direct drive ICF under a range of laser intensities relevant to both the conventional hot-spot ignition and shock ignition. We study the in uence of LPI and hot electrons on the hydrodynamic evolution of ICF targets. We study hot electron generation in intense laser-plasma interactions in fast ignition cone targets. We also study how to implement particle collisions, which are important to hot electron generation in LPI, in Particle-in-Cell (PIC) codes on Graphic Process Units (GPU's). We find that ion density modulations can turn convective two-plasmon decay (TPD) and stimulated Raman scattering (SRS) instabilities to absolute ones in the region below the quarter critical density (nc=4). In this region, our uid simulations show that when a sinusoidal density modulation is superimposed on a linear density profile, convective two-plasmon decay (TPD) and stimulated Raman scattering (SRS) instabilities can become absolutely unstable under realistic direct-drive ICF conditions. Analysis of a three-wave model with a two-slope density profile shows that a sufficiently large change of the density gradient in a linear density profile can turn convective instabilities into absolute ones. An analytical expression is given for the threshold of the gradient change, which depends on the convective gain only. Growth rates for the absolute modes are also obtained. The threshold and growth rates from the two-slope profile are found to approximate those under sinusoidal modulations. These results explain the origin of the TPD modes below the nc=4 surface that in previous research were found to be critical to hot electron generation. Combining PIC and hydrodynamics simulations, we study the LPI and hydro evolution of coronal plasmas in an OMEGA EP[J.H. Kelly et al., 2006] long-scalelength experiment[Hu et al., 2013; Haberberger et al., 2014] with planar targets. Plasma and laser conditions are first obtained in a DRACO hydro simulation with only inverse-bremsstrahlung absorption. Using these conditions, an OSIRIS PIC simulation is performed to study laser absorption and hot-electron generation caused by LPI near the nc=4 region. The obtained information from the PIC simulation is subsequently coupled back to another DRACO simulation to examine how the LPI affect the overall hydrodynamics. The results show that the LPIinduced laser absorption can increase the electron temperature due to local heating by plasma waves. But it does not significantly change the density scale length in the corona because the high heat conductivity can spread the higher energy deposited near the nc=4 region in a wider region, and the portion of the energy carried by the hot electrons going towards high density region is still deposited beyond the nc=4 region. The collisional effects can affect the hot electron generation by damping the coupling waves of TPD and SRS instabilities. We have benchmarked the collision package in OSIRIS and adapted this package to a PIC code on graphics processors (GPU) with CUDA. The collision package is based on the cumulative collision theory, which treats a succession of small-angle binary collisions as a unique binary collision with a large scattering angle. It uses the computing cell in the GPUPIC code as the collision cell, and randomly pairs the particles in each collision cell for collision. In this process, it takes advantage of the fast on-chip shared memory and gets a remarkable performance. The benchmarks show that this collision package only needs to be called every 100 steps, and has a performance of 0:07 - 0:09ns=particle - step, only a 1:4% increase over the 5:36ns=particle - step without collisions on a Nvidia GTX 680 GPU. Test problems of beam-plasma scattering and electron plasma wave damping show that the collision frequencies calculated from the simulation results are consistent with theory. Hot electron generation is also important in fast ignition where typical laser intensities are higher than the hot-spot ignition or shock ignition. We perform PIC simulations for a cone-in-shell integrated fast-ignition experiment at the Omega Laser Facility[Boehly et al., 1997] with the initial plasma density profile taken from hydrodynamic simulations of the prepulse interaction with the gold cone. Hotelectron generation from laser-pre-plasma interactions and transport up to 100nc are studied. The simulations show a mean divergence half-angle of 68 degrees and 50% absorption for the hot electrons. The results show that the hot electrons are dominated in number by low-energy electrons but in energy by multi-MeV electrons. Electron transport between 5 and 100 nc is ballistic. In the late stage of the simulation, hot electron generation is largely independent of polarization, indicating a stochastic hot-electron-generation mechanism.

Nuclear Science Abstracts

Download Nuclear Science Abstracts PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 680 pages
Book Rating : 4.E/5 ( download)

DOWNLOAD NOW!


Book Synopsis Nuclear Science Abstracts by :

Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1976 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Scientific and Technical Aerospace Reports

Download Scientific and Technical Aerospace Reports PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 704 pages
Book Rating : 4.:/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Scientific and Technical Aerospace Reports by :

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Fusion Energy Update

Download Fusion Energy Update PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 124 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Fusion Energy Update by :

Download or read book Fusion Energy Update written by and published by . This book was released on 1979 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Energy Research Abstracts

Download Energy Research Abstracts PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 812 pages
Book Rating : 4.:/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Energy Research Abstracts by :

Download or read book Energy Research Abstracts written by and published by . This book was released on 1986 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Physics Briefs

Download Physics Briefs PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1420 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Physics Briefs by :

Download or read book Physics Briefs written by and published by . This book was released on 1993 with total page 1420 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Laser - Surface Interactions

Download Laser - Surface Interactions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400773412
Total Pages : 271 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Laser - Surface Interactions by : Rashid A. Ganeev

Download or read book Laser - Surface Interactions written by Rashid A. Ganeev and published by Springer Science & Business Media. This book was released on 2013-10-17 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about the interaction of laser radiation with various surfaces at variable parameters of radiation. As a basic principle of classification we chose the energetic or intensity level of interaction of laser radiation with the surfaces. These two characteristics of laser radiation are the most important parameters defining entire spectrum of the processes occurring on the surfaces during interaction with electromagnetic waves. This is a first book containing a whole spectrum of the laser-surface interactions distinguished by the ranges of used laser intensity. It combines the surface response starting from extremely weak laser intensities (~1 W cm-2) up to the relativistic intensities (~1020 W cm-2 and higher). The book provides the basic information about lasers and acquaints the reader with both common applications of laser-surface interactions (laser-related printers, scanners, barcode readers, discs, material processing, military, holography, medicine, etc) and unusual uses of the processes on the surfaces under the action of lasers (art conservation, rangefinders and velocimeters, space and earth explorations, surface engineering and ablation, and others). The scientific applications of laser-surfaces interactions (surface optical nonlinearities, surface enhanced Raman spectroscopy, surface nanostructuring, nanoripples and clusters formation, X-ray lasers and harmonic generation from the surfaces) are discussed from the point of view of the close relations between the properties of surface and matter, which is a cornerstone of most of studies of materials. The novelty of the approach developed in Laser - Surface Interactions is related with the interconnection of scientific studies with numerous applications of the laser-surface interactions separated in different chapters by the ranges of laser intensities. We present most recent achievements in this field. The book provides valuable information for different ranges of reader's preparedness to the laser-related topics (from unprepared readers, to students, engineers and researchers, professionals and academics).

Laser Interaction and Related Plasma Phenomena

Download Laser Interaction and Related Plasma Phenomena PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461538041
Total Pages : 647 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Laser Interaction and Related Plasma Phenomena by : H. Hora

Download or read book Laser Interaction and Related Plasma Phenomena written by H. Hora and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 9th International Workshop on "Laser Interaction and Related Plasma Phenomena" was held November 6-10, 1989, at the Naval Postgraduate School, Monterey, Cal ifornia. Starting in 1969, thi s represents a continuation of the longest series of meetings in this field in the United States. It is, in fact, the longest series anywhere with published Proceedings that document the advances and the growth of this dynamic field of physics and technology. Following the discovery of the laser in 1960, the study of processes involved in laser beam interactions with materials opened a basically new dimension of physics. The energy densities and intensities generated are many orders of magnitude beyond those previously observed in laboratories. Simultaneously, the temporal dynamics of this interaction covers a broad range, only recently reaching ultra short times, of the order of a few femtoseconds. Applications of this technology are of interest for many types of material treatments. Further, from the very beginning, a key ambitious goal has been to produce fusion energy by intense laser irradiation of a target containi ng appropriate fusion fuels. The vari ous phenomena discovered during the ensuing research on laser-fusion are, indeed, much more complex than originally expected. However, in view of recent advances in physics understanding, a route to successful laser fusion can be seen. The development of fusion energy received a very strong stimulation since the last workshop due to the now partially publicized results of underground nuclear explosions.

Atoms, Solids, and Plasmas in Super-Intense Laser Fields

Download Atoms, Solids, and Plasmas in Super-Intense Laser Fields PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780306466151
Total Pages : 434 pages
Book Rating : 4.4/5 (661 download)

DOWNLOAD NOW!


Book Synopsis Atoms, Solids, and Plasmas in Super-Intense Laser Fields by : Dimitri Batani

Download or read book Atoms, Solids, and Plasmas in Super-Intense Laser Fields written by Dimitri Batani and published by Springer Science & Business Media. This book was released on 2001-09-30 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the 30th Course of the International School of Quantum Electronics on Atoms, Solids and Plasmas in Super-Intense Laser Fields, held 8-14 July, in Erice, Sicily