Author : F. Oberhettinger
Publisher : Springer Science & Business Media
ISBN 13 : 3642656455
Total Pages : 438 pages
Book Rating : 4.6/5 (426 download)
Book Synopsis Tables of Laplace Transforms by : F. Oberhettinger
Download or read book Tables of Laplace Transforms written by F. Oberhettinger and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This material represents a collection of integrals of the Laplace- and inverse Laplace Transform type. The usef- ness of this kind of information as a tool in various branches of Mathematics is firmly established. Previous publications include the contributions by A. Erdelyi and Roberts and Kaufmann (see References). Special consideration is given to results involving higher functions as integrand and it is believed that a substantial amount of them is presented here for the first time. Greek letters denote complex parameters within the given range of validity. Latin letters denote (unless otherwise stated) real positive parameters and a possible extension to complex values by analytic continuation will often pose no serious problem. The authors are indebted to Mrs. Jolan Eross for her tireless effort and patience while typing this manu script. Oregon State University Corvallis, Oregon Eastern Michigan University Ypsilanti, Michigan The Authors Contents Part I. Laplace Transforms In troduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 General Formulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 2 Algebraic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1. 3 Powers of Arbitrary Order. . . . . . . . . . . . . . . . . . . . . . . . 21 1. 4 Sectionally Rational- and Rows of Delta Functions 28 1. 5 Exponential Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1. 6 Logarithmic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 1. 7 Trigonometric Functions. . . . . . . . . . . . . . . . . . . . . . . . . . 54 1. 8 Inverse Trigonometric Functions. . . . . . . . . . . . . . . . . . 81 1. 9 Hyperbolic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 1. 10 Inverse Hyperbolic Functions. . . . . . . . . . . . . . . . . . . . . 99 1. 11 Orthogonal Polynomials . . . . . . . •. . . . . . . . . . . . . . . . . . . 103 1. 12 Legendre Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 1. 13 Bessel Functions of Order Zero and Unity . . . . . . . . . 119 1. 14 Bessel Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 1. 15 Modified Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . .