Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Studies In Time Series And Random Dynamics
Download Studies In Time Series And Random Dynamics full books in PDF, epub, and Kindle. Read online Studies In Time Series And Random Dynamics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Introduction to Time Series Analysis by : Mark Pickup
Download or read book Introduction to Time Series Analysis written by Mark Pickup and published by SAGE Publications. This book was released on 2014-10-15 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing time series methods and their application in social science research, this practical guide to time series models is the first in the field written for a non-econometrics audience. Giving readers the tools they need to apply models to their own research, Introduction to Time Series Analysis, by Mark Pickup, demonstrates the use of—and the assumptions underlying—common models of time series data including finite distributed lag; autoregressive distributed lag; moving average; differenced data; and GARCH, ARMA, ARIMA, and error correction models. “This volume does an excellent job of introducing modern time series analysis to social scientists who are already familiar with basic statistics and the general linear model.” —William G. Jacoby, Michigan State University
Book Synopsis Time Series Analysis by : Henrik Madsen
Download or read book Time Series Analysis written by Henrik Madsen and published by CRC Press. This book was released on 2007-11-28 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a focus on analyzing and modeling linear dynamic systems using statistical methods, Time Series Analysis formulates various linear models, discusses their theoretical characteristics, and explores the connections among stochastic dynamic models. Emphasizing the time domain description, the author presents theorems to highlight the most
Author :Paul S.P. Cowpertwait Publisher :Springer Science & Business Media ISBN 13 :0387886982 Total Pages :262 pages Book Rating :4.3/5 (878 download)
Book Synopsis Introductory Time Series with R by : Paul S.P. Cowpertwait
Download or read book Introductory Time Series with R written by Paul S.P. Cowpertwait and published by Springer Science & Business Media. This book was released on 2009-05-28 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives you a step-by-step introduction to analysing time series using the open source software R. Each time series model is motivated with practical applications, and is defined in mathematical notation. Once the model has been introduced it is used to generate synthetic data, using R code, and these generated data are then used to estimate its parameters. This sequence enhances understanding of both the time series model and the R function used to fit the model to data. Finally, the model is used to analyse observed data taken from a practical application. By using R, the whole procedure can be reproduced by the reader. All the data sets used in the book are available on the website http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/. The book is written for undergraduate students of mathematics, economics, business and finance, geography, engineering and related disciplines, and postgraduate students who may need to analyse time series as part of their taught programme or their research.
Book Synopsis Practical Time Series Analysis by : Aileen Nielsen
Download or read book Practical Time Series Analysis written by Aileen Nielsen and published by O'Reilly Media. This book was released on 2019-09-20 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance
Book Synopsis Remote Sensing Time Series by : Claudia Kuenzer
Download or read book Remote Sensing Time Series written by Claudia Kuenzer and published by Springer. This book was released on 2015-04-28 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises an outstanding variety of chapters on Earth Observation based time series analyses, undertaken to reveal past and current land surface dynamics for large areas. What exactly are time series of Earth Observation data? Which sensors are available to generate real time series? How can they be processed to reveal their valuable hidden information? Which challenges are encountered on the way and which pre-processing is needed? And last but not least: which processes can be observed? How are large regions of our planet changing over time and which dynamics and trends are visible? These and many other questions are answered within this book “Remote Sensing Time Series Analyses – Revealing Land Surface Dynamics”. Internationally renowned experts from Europe, the USA and China present their exciting findings based on the exploitation of satellite data archives from well-known sensors such as AVHRR, MODIS, Landsat, ENVISAT, ERS and METOP amongst others. Selected review and methods chapters provide a good overview over time series processing and the recent advances in the optical and radar domain. A fine selection of application chapters addresses multi-class land cover and land use change at national to continental scale, the derivation of patterns of vegetation phenology, biomass assessments, investigations on snow cover duration and recent dynamics, as well as urban sprawl observed over time.
Book Synopsis Extracting Knowledge From Time Series by : Boris P. Bezruchko
Download or read book Extracting Knowledge From Time Series written by Boris P. Bezruchko and published by Springer Science & Business Media. This book was released on 2010-09-03 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical modelling is ubiquitous. Almost every book in exact science touches on mathematical models of a certain class of phenomena, on more or less speci?c approaches to construction and investigation of models, on their applications, etc. As many textbooks with similar titles, Part I of our book is devoted to general qu- tions of modelling. Part II re?ects our professional interests as physicists who spent much time to investigations in the ?eld of non-linear dynamics and mathematical modelling from discrete sequences of experimental measurements (time series). The latter direction of research is known for a long time as “system identi?cation” in the framework of mathematical statistics and automatic control theory. It has its roots in the problem of approximating experimental data points on a plane with a smooth curve. Currently, researchers aim at the description of complex behaviour (irregular, chaotic, non-stationary and noise-corrupted signals which are typical of real-world objects and phenomena) with relatively simple non-linear differential or difference model equations rather than with cumbersome explicit functions of time. In the second half of the twentieth century, it has become clear that such equations of a s- ?ciently low order can exhibit non-trivial solutions that promise suf?ciently simple modelling of complex processes; according to the concepts of non-linear dynamics, chaotic regimes can be demonstrated already by a third-order non-linear ordinary differential equation, while complex behaviour in a linear model can be induced either by random in?uence (noise) or by a very high order of equations.
Book Synopsis Nonlinear Time Series Analysis with R by : Ray G. Huffaker
Download or read book Nonlinear Time Series Analysis with R written by Ray G. Huffaker and published by Oxford University Press. This book was released on 2017 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Time Series Analysis with R provides a practical guide to emerging empirical techniques allowing practitioners to diagnose whether highly fluctuating and random appearing data are most likely driven by random or deterministic dynamic forces. Practitioners become 'data detectives' accumulating hard empirical evidence supporting their choice of a modelling approach corresponding to reality. The book is targeted to non-mathematicians with limitedknowledge of nonlinear dynamics; in particular, professionals and graduate students in engineering and the biophysical and social sciences. The book makes readers active learners with hands-on computerexperiments in R code directing them through Nonlinear Time Series Analysis (NLTS). The computer code is explained in detail so that readers can adjust it for use in their own work. The book also provides readers with an explicit framework--condensed from sound empirical practices recommended in the literature--that details a step-by-step procedure for applying NLTS in real-world data diagnostics.
Book Synopsis Modeling of Transport Demand by : V.A Profillidis
Download or read book Modeling of Transport Demand written by V.A Profillidis and published by Elsevier. This book was released on 2018-10-23 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling of Transport Demand explains the mechanisms of transport demand, from analysis to calculation and forecasting. Packed with strategies for forecasting future demand for all transport modes, the book helps readers assess the validity and accuracy of demand forecasts. Forecasting and evaluating transport demand is an essential task of transport professionals and researchers that affects the design, extension, operation, and maintenance of all transport infrastructures. Accurate demand forecasts are necessary for companies and government entities when planning future fleet size, human resource needs, revenues, expenses, and budgets. The operational and planning skills provided in Modeling of Transport Demand help readers solve the problems they face on a daily basis. Modeling of Transport Demand is written for researchers, professionals, undergraduate and graduate students at every stage in their careers, from novice to expert. The book assists those tasked with constructing qualitative models (based on executive judgment, Delphi, scenario writing, survey methods) or quantitative ones (based on statistical, time series, econometric, gravity, artificial neural network, and fuzzy methods) in choosing the most suitable solution for all types of transport applications. - Presents the most recent and relevant findings and research - both at theoretical and practical levels - of transport demand - Provides a theoretical analysis and formulations that are clearly presented for ease of understanding - Covers analysis for all modes of transportation - Includes case studies that present the most appropriate formulas and methods for finding solutions and evaluating results
Book Synopsis Random Graph Dynamics by : Rick Durrett
Download or read book Random Graph Dynamics written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-05-31 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter.
Book Synopsis Time Series Analysis and Its Applications by : Robert H. Shumway
Download or read book Time Series Analysis and Its Applications written by Robert H. Shumway and published by . This book was released on 2014-01-15 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Nonlinear Time Series Analysis by : Ruey S. Tsay
Download or read book Nonlinear Time Series Analysis written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2018-09-13 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.
Book Synopsis Forecasting: principles and practice by : Rob J Hyndman
Download or read book Forecasting: principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Book Synopsis Time Series Analysis in Seismology by : Alejandro Ramírez-Rojas
Download or read book Time Series Analysis in Seismology written by Alejandro Ramírez-Rojas and published by Elsevier. This book was released on 2019-08-02 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time Series Analysis in Seismology: Practical Applications provides technical assistance and coverage of available methods to professionals working in the field of seismology. Beginning with a thorough review of open problems in geophysics, including tectonic plate dynamics, localization of solitons, and forecasting, the book goes on to describe the various types of time series or punctual processes obtained from those systems. Additionally, the book describes a variety of methods and techniques relating to seismology and includes a discussion of future developments and improvements. Time Series Analysis in Seismology offers a concise presentation of the most recent advances in the analysis of geophysical data, particularly with regard to seismology, making it a valuable tool for researchers and students working in seismology and geophysics. Presents the necessary tools for time series analysis as it relates to seismology in a compact and consistent manner Includes a discussion of technical resources that can be applied to time series data analysis across multiple disciplines Describes the methods and techniques available for solving problems related to the analysis of complex data sets Provides exercises at the end of each chapter to enhance comprehension
Book Synopsis Multiple Time Series Models by : Patrick T. Brandt
Download or read book Multiple Time Series Models written by Patrick T. Brandt and published by SAGE. This book was released on 2007 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many analyses of time series data involve multiple, related variables. Modeling Multiple Time Series presents many specification choices and special challenges. This book reviews the main competing approaches to modeling multiple time series: simultaneous equations, ARIMA, error correction models, and vector autoregression. The text focuses on vector autoregression (VAR) models as a generalization of the other approaches mentioned. Specification, estimation, and inference using these models is discussed. The authors also review arguments for and against using multi-equation time series models. Two complete, worked examples show how VAR models can be employed. An appendix discusses software that can be used for multiple time series models and software code for replicating the examples is available. Key Features: * Offers a detailed comparison of different time series methods and approaches. * Includes a self-contained introduction to vector autoregression modeling. * Situates multiple time series modeling as a natural extension of commonly taught statistical models.
Book Synopsis Random Dynamical Systems by : Rabi Bhattacharya
Download or read book Random Dynamical Systems written by Rabi Bhattacharya and published by Cambridge University Press. This book was released on 2007-01-08 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: This treatment provides an exposition of discrete time dynamic processes evolving over an infinite horizon. Chapter 1 reviews some mathematical results from the theory of deterministic dynamical systems, with particular emphasis on applications to economics. The theory of irreducible Markov processes, especially Markov chains, is surveyed in Chapter 2. Equilibrium and long run stability of a dynamical system in which the law of motion is subject to random perturbations is the central theme of Chapters 3-5. A unified account of relatively recent results, exploiting splitting and contractions, that have found applications in many contexts is presented in detail. Chapter 6 explains how a random dynamical system may emerge from a class of dynamic programming problems. With examples and exercises, readers are guided from basic theory to the frontier of applied mathematical research.
Book Synopsis Random Perturbations of Dynamical Systems by : M. I. Freidlin
Download or read book Random Perturbations of Dynamical Systems written by M. I. Freidlin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Asymptotical problems have always played an important role in probability theory. In classical probability theory dealing mainly with sequences of independent variables, theorems of the type of laws of large numbers, theorems of the type of the central limit theorem, and theorems on large deviations constitute a major part of all investigations. In recent years, when random processes have become the main subject of study, asymptotic investigations have continued to playa major role. We can say that in the theory of random processes such investigations play an even greater role than in classical probability theory, because it is apparently impossible to obtain simple exact formulas in problems connected with large classes of random processes. Asymptotical investigations in the theory of random processes include results of the types of both the laws of large numbers and the central limit theorem and, in the past decade, theorems on large deviations. Of course, all these problems have acquired new aspects and new interpretations in the theory of random processes.
Book Synopsis Niedermeyer's Electroencephalography by : Donald L. Schomer
Download or read book Niedermeyer's Electroencephalography written by Donald L. Schomer and published by Lippincott Williams & Wilkins. This book was released on 2012-10-18 with total page 1308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The leading reference on electroencephalography since 1982, Niedermeyer's Electroencephalography is now in its thoroughly updated Sixth Edition. An international group of experts provides comprehensive coverage of the neurophysiologic and technical aspects of EEG, evoked potentials, and magnetoencephalography, as well as the clinical applications of these studies in neonates, infants, children, adults, and older adults. This edition's new lead editor, Donald Schomer, MD, has updated the technical information and added a major new chapter on artifacts. Other highlights include complete coverage of EEG in the intensive care unit and new chapters on integrating other recording devices with EEG; transcranial electrical and magnetic stimulation; EEG/TMS in evaluation of cognitive and mood disorders; and sleep in premature infants, children and adolescents, and the elderly. A companion website includes fully searchable text and image bank.