Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Stochastic Model Based Image Segmentation Using Markov Random Fields And Multi Layer Perceptrons
Download Stochastic Model Based Image Segmentation Using Markov Random Fields And Multi Layer Perceptrons full books in PDF, epub, and Kindle. Read online Stochastic Model Based Image Segmentation Using Markov Random Fields And Multi Layer Perceptrons ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Download or read book Oceans '93 written by and published by . This book was released on 1993 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Conference Proceedings written by and published by . This book was released on 1991 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Electrical & Electronics Abstracts by :
Download or read book Electrical & Electronics Abstracts written by and published by . This book was released on 1997 with total page 1948 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Index to IEEE Publications by : Institute of Electrical and Electronics Engineers
Download or read book Index to IEEE Publications written by Institute of Electrical and Electronics Engineers and published by . This book was released on 1997 with total page 1468 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis An Introduction to Conditional Random Fields by : Charles Sutton
Download or read book An Introduction to Conditional Random Fields written by Charles Sutton and published by Now Pub. This book was released on 2012 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Conditional Random Fields provides a comprehensive tutorial aimed at application-oriented practitioners seeking to apply CRFs. The monograph does not assume previous knowledge of graphical modeling, and so is intended to be useful to practitioners in a wide variety of fields.
Download or read book Science Abstracts written by and published by . This book was released on 1995 with total page 1360 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Signal and Image Processing for Remote Sensing by : C.H. Chen
Download or read book Signal and Image Processing for Remote Sensing written by C.H. Chen and published by CRC Press. This book was released on 2024-06-11 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in signal and image processing for remote sensing have been tremendous in recent years. The progress has been particularly significant with the use of deep learning based techniques to solve remote sensing problems. These advancements are the focus of this third edition of Signal and Image Processing for Remote Sensing. It emphasizes the use of machine learning approaches for the extraction of remote sensing information. Other topics include change detection in remote sensing and compressed sensing. With 19 new chapters written by world leaders in the field, this book provides an authoritative examination and offers a unique point of view on signal and image processing. Features Includes all new content and does not replace the previous edition Covers machine learning approaches in both signal and image processing for remote sensing Studies deep learning methods for remote sensing information extraction that is found in other books Explains SAR, microwave, seismic, GPR, and hyperspectral sensors and all sensors considered Discusses improved pattern classification approaches and compressed sensing approaches Provides ample examples of each aspect of both signal and image processing This book is intended for university academics, researchers, postgraduate students, industry, and government professionals who use remote sensing and its applications.
Book Synopsis Control of Sensory Perception for Discrete Event Systems by : Geir E. Hovland
Download or read book Control of Sensory Perception for Discrete Event Systems written by Geir E. Hovland and published by Universal-Publishers. This book was released on 1999 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: The problem of controlling sensory perception for use in discrete event feedback control systems is addressed in this thesis. The sensory perception controller (SPC) is formulated as a sequential Markov decision problem. The SPC has two main objectives; 1) to collect perceptual information to identify discrete events with high levels of confidence and 2) to keep the sensing costs low. Several event recognition techniques are available where each of the event recognisers produces confidence levels of recognised events. For a discrete event control system running in normal operation, the confidence levels are typically large and only a few event recognisers are needed. Then, as the event recognition becomes harder, the confidence levels will decrease and additional event recognisers are utilised by the SPC. The final product is an intelligent architecture with the ability to actively control the use of sensory input and perception to achieve high performance discrete event recognition. The discrete event control framework is chosen for several reasons. First, the theory of discrete event systems is applicable to a wide range of systems. In particular, manufacturing, robotics, communication networks, transportation systems and logistic systems all fall within the class of discrete event systems. Second, the dynamics of the sensing signals used by the event recognisers are often strong and contain a large amount of information at the occurrence of discrete events. Third, because of the discrete nature of events, feedback information is not required continuously. Hence, valuable processing time is available between events. Fourth, the discrete events are a natural common representational format for the sensors. A common sensor format aids the decision process when dealing with different sensor types. Fifth, the sensing aspect of discrete event systems has often been neglected in the literature. In this thesis we present a unique approach to on-line discrete event identification. The thesis contains both theoretical results and demonstrated real-world applications. The main theoretical contributions of the thesis are 1) the development of a sensory perception controller for the dynamic real-time selection of event recognisers. The proposed solution solves the Markov decision process using stochastic dynamic programming (SDP). SDP guarantees cost-efficiency of the real-time SPC by solving a sequential constrained optimisation problem. 2) A sensitivity analysis method for the sensory perception controller has been developed by exploring the relationship between Markov decision theory and linear programming. The sensitivity analysis aids in the robust tuning of the SPC by finding low sensitivity areas for the controller parameters. Two real-world applications are presented. First, several event recognition techniques have been developed for a robotic assembly task. Robotic assembly fits particularly well in the discrete event framework, where discrete events correspond to changes in contact states between the workpiece and the environment. Force measurements in particular contain a significant amount of information when the contact state changes. Second, the sensory perception control theory and the sensitivity analysis have been demonstrated for a mobile navigation problem. The cost-efficient use of sensory perception reduces the need for mobile robots to carry heavy computational resources.
Book Synopsis Machine Learning by : Kevin P. Murphy
Download or read book Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2012-08-24 with total page 1102 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Book Synopsis Mastering Machine Learning Algorithms by : Giuseppe Bonaccorso
Download or read book Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and published by Packt Publishing Ltd. This book was released on 2020-01-31 with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt: Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems Key FeaturesUpdated to include new algorithms and techniquesCode updated to Python 3.8 & TensorFlow 2.x New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applicationsBook Description Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios. What you will learnUnderstand the characteristics of a machine learning algorithmImplement algorithms from supervised, semi-supervised, unsupervised, and RL domainsLearn how regression works in time-series analysis and risk predictionCreate, model, and train complex probabilistic models Cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work – train, optimize, and validate them Work with autoencoders, Hebbian networks, and GANsWho this book is for This book is for data science professionals who want to delve into complex ML algorithms to understand how various machine learning models can be built. Knowledge of Python programming is required.
Download or read book NDT Data Fusion written by Xavier Gros and published by Elsevier. This book was released on 1996-11-01 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data fusion is a rapidly developing technology which involves the combination of information supplied by several NDT (Non-Destructive Testing) sensors to provide a more complete and understandable picture of structural integrity. This text is the first to be devoted exclusively to the concept of multisensor integration and data fusion applied to NDT. The advantages of this methodology are widely acknowledged and the author presents an excellent introduction to data fusion processes. Problems are approached progressively through detailed case studies, offering practical guidance for those wishing to develop and explore NDT data fusion further. This book will prove invaluable to inspectors, students and researchers concerned with NDT signal processing measurements and testing. It shows the great value and major benefits which can be achieved by implementing multisensor data fusion, not only in NDT but also in any discipline where measurements and testing are key activities.
Book Synopsis The 1996 IEEE International Conference on Neural Networks, June 3-6, 1996, Sheraton Washington Hotel, Washington, DC, USA.: Proceedings by :
Download or read book The 1996 IEEE International Conference on Neural Networks, June 3-6, 1996, Sheraton Washington Hotel, Washington, DC, USA.: Proceedings written by and published by . This book was released on 1996 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Advances in Neural Information Processing Systems 19 by : Bernhard Schölkopf
Download or read book Advances in Neural Information Processing Systems 19 written by Bernhard Schölkopf and published by MIT Press. This book was released on 2007 with total page 1668 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.
Book Synopsis American Doctoral Dissertations by :
Download or read book American Doctoral Dissertations written by and published by . This book was released on 1993 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Human Motion Sensing and Recognition by : Honghai Liu
Download or read book Human Motion Sensing and Recognition written by Honghai Liu and published by Springer. This book was released on 2017-05-11 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to the latest exciting advances in human motion sensing and recognition, from the theoretical development of fuzzy approaches to their applications. The topics covered include human motion recognition in 2D and 3D, hand motion analysis with contact sensors, and vision-based view-invariant motion recognition, especially from the perspective of Fuzzy Qualitative techniques. With the rapid development of technologies in microelectronics, computers, networks, and robotics over the last decade, increasing attention has been focused on human motion sensing and recognition in many emerging and active disciplines where human motions need to be automatically tracked, analyzed or understood, such as smart surveillance, intelligent human-computer interaction, robot motion learning, and interactive gaming. Current challenges mainly stem from the dynamic environment, data multi-modality, uncertain sensory information, and real-time issues. These techniques are shown to effectively address the above challenges by bridging the gap between symbolic cognitive functions and numerical sensing & control tasks in intelligent systems. The book not only serves as a valuable reference source for researchers and professionals in the fields of computer vision and robotics, but will also benefit practitioners and graduates/postgraduates seeking advanced information on fuzzy techniques and their applications in motion analysis.
Book Synopsis Artificial Intelligence Abstracts by :
Download or read book Artificial Intelligence Abstracts written by and published by . This book was released on 1991 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Academic Press Library in Signal Processing by : Paulo S.R. Diniz
Download or read book Academic Press Library in Signal Processing written by Paulo S.R. Diniz and published by Academic Press. This book was released on 2013-09-21 with total page 1559 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first volume, edited and authored by world leading experts, gives a review of the principles, methods and techniques of important and emerging research topics and technologies in machine learning and advanced signal processing theory. With this reference source you will: - Quickly grasp a new area of research - Understand the underlying principles of a topic and its application - Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved - Quick tutorial reviews of important and emerging topics of research in machine learning - Presents core principles in signal processing theory and shows their applications - Reference content on core principles, technologies, algorithms and applications - Comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge - Edited by leading people in the field who, through their reputation, have been able to commission experts to write on a particular topic