Statistics in Volcanology

Download Statistics in Volcanology PDF Online Free

Author :
Publisher : Geological Society of London
ISBN 13 : 9781862392083
Total Pages : 304 pages
Book Rating : 4.3/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Statistics in Volcanology by : Heidy M. Mader

Download or read book Statistics in Volcanology written by Heidy M. Mader and published by Geological Society of London. This book was released on 2006 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistics in Volcanology is a comprehensive guide to modern statistical methods applied in volcanology written by today's leading authorities. The volume aims to show how the statistical analysis of complex volcanological data sets, including time series, and numerical models of volcanic processes can improve our ability to forecast volcanic eruptions. Specific topics include the use of expert elicitation and Bayesian methods in eruption forecasting, statistical models of temporal and spatial patterns of volcanic activity, analysis of time series in volcano seismology, probabilistic hazard assessment, and assessment of numerical models using robust statistical methods. Also provided are comprehensive overviews of volcanic phenomena, and a full glossary of both volcanological and statistical terms. Statistics in Volcanology is essential reading for advanced undergraduates, graduate students, and research scientists interested in this multidisciplinary field.

Forecasting: principles and practice

Download Forecasting: principles and practice PDF Online Free

Author :
Publisher : OTexts
ISBN 13 : 0987507117
Total Pages : 380 pages
Book Rating : 4.9/5 (875 download)

DOWNLOAD NOW!


Book Synopsis Forecasting: principles and practice by : Rob J Hyndman

Download or read book Forecasting: principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Non-linear and Non-stationary Time Series Analysis

Download Non-linear and Non-stationary Time Series Analysis PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 250 pages
Book Rating : 4.:/5 (319 download)

DOWNLOAD NOW!


Book Synopsis Non-linear and Non-stationary Time Series Analysis by : Maurice Bertram Priestley

Download or read book Non-linear and Non-stationary Time Series Analysis written by Maurice Bertram Priestley and published by . This book was released on 1988 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Using R for Principles of Econometrics

Download Using R for Principles of Econometrics PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 1387473611
Total Pages : 278 pages
Book Rating : 4.3/5 (874 download)

DOWNLOAD NOW!


Book Synopsis Using R for Principles of Econometrics by : Constantin Colonescu

Download or read book Using R for Principles of Econometrics written by Constantin Colonescu and published by Lulu.com. This book was released on 2017-12-28 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a beginner's guide to applied econometrics using the free statistics software R. It provides and explains R solutions to most of the examples in 'Principles of Econometrics' by Hill, Griffiths, and Lim, fourth edition. 'Using R for Principles of Econometrics' requires no previous knowledge in econometrics or R programming, but elementary notions of statistics are helpful.

Advance Trends in Soft Computing

Download Advance Trends in Soft Computing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319036742
Total Pages : 464 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Advance Trends in Soft Computing by : Mo Jamshidi

Download or read book Advance Trends in Soft Computing written by Mo Jamshidi and published by Springer. This book was released on 2013-11-18 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the proceedings of the 3rd World Conference on Soft Computing (WCSC), which was held in San Antonio, TX, USA, on December 16-18, 2013. It presents start-of-the-art theory and applications of soft computing together with an in-depth discussion of current and future challenges in the field, providing readers with a 360 degree view on soft computing. Topics range from fuzzy sets, to fuzzy logic, fuzzy mathematics, neuro-fuzzy systems, fuzzy control, decision making in fuzzy environments, image processing and many more. The book is dedicated to Lotfi A. Zadeh, a renowned specialist in signal analysis and control systems research who proposed the idea of fuzzy sets, in which an element may have a partial membership, in the early 1960s, followed by the idea of fuzzy logic, in which a statement can be true only to a certain degree, with degrees described by numbers in the interval [0,1]. The performance of fuzzy systems can often be improved with the help of optimization techniques, e.g. evolutionary computation, and by endowing the corresponding system with the ability to learn, e.g. by combining fuzzy systems with neural networks. The resulting “consortium” of fuzzy, evolutionary, and neural techniques is known as soft computing and is the main focus of this book.

Time Series Analysis Univariate and Multivariate Methods

Download Time Series Analysis Univariate and Multivariate Methods PDF Online Free

Author :
Publisher : Pearson
ISBN 13 : 9780134995366
Total Pages : 648 pages
Book Rating : 4.9/5 (953 download)

DOWNLOAD NOW!


Book Synopsis Time Series Analysis Univariate and Multivariate Methods by : William W. S. Wei

Download or read book Time Series Analysis Univariate and Multivariate Methods written by William W. S. Wei and published by Pearson. This book was released on 2018-03-14 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.

Time Series Analysis: Methods and Applications

Download Time Series Analysis: Methods and Applications PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444538585
Total Pages : 778 pages
Book Rating : 4.4/5 (445 download)

DOWNLOAD NOW!


Book Synopsis Time Series Analysis: Methods and Applications by : Tata Subba Rao

Download or read book Time Series Analysis: Methods and Applications written by Tata Subba Rao and published by Elsevier. This book was released on 2012-06-26 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.

Extremes in a Changing Climate

Download Extremes in a Changing Climate PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400744781
Total Pages : 430 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Extremes in a Changing Climate by : Amir AghaKouchak

Download or read book Extremes in a Changing Climate written by Amir AghaKouchak and published by Springer Science & Business Media. This book was released on 2012-10-24 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a collection of the state-of-the-art methodologies and approaches suggested for detecting extremes, trend analysis, accounting for nonstationarities, and uncertainties associated with extreme value analysis in a changing climate. This volume is designed so that it can be used as the primary reference on the available methodologies for analysis of climate extremes. Furthermore, the book addresses current hydrometeorologic global data sets and their applications for global scale analysis of extremes. While the main objective is to deliver recent theoretical concepts, several case studies on extreme climate conditions are provided. Audience The book is suitable for teaching in graduate courses in the disciplines of Civil and Environmental Engineering, Earth System Science, Meteorology and Atmospheric Sciences.

Hidden Markov and Other Models for Discrete- valued Time Series

Download Hidden Markov and Other Models for Discrete- valued Time Series PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780412558504
Total Pages : 256 pages
Book Rating : 4.5/5 (585 download)

DOWNLOAD NOW!


Book Synopsis Hidden Markov and Other Models for Discrete- valued Time Series by : Iain L. MacDonald

Download or read book Hidden Markov and Other Models for Discrete- valued Time Series written by Iain L. MacDonald and published by CRC Press. This book was released on 1997-01-01 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete-valued time series are common in practice, but methods for their analysis are not well-known. In recent years, methods have been developed which are specifically designed for the analysis of discrete-valued time series. Hidden Markov and Other Models for Discrete-Valued Time Series introduces a new, versatile, and computationally tractable class of models, the "hidden Markov" models. It presents a detailed account of these models, then applies them to data from a wide range of diverse subject areas, including medicine, climatology, and geophysics. This book will be invaluable to researchers and postgraduate and senior undergraduate students in statistics. Researchers and applied statisticians who analyze time series data in medicine, animal behavior, hydrology, and sociology will also find this information useful.

The Spectral Analysis of Time Series

Download The Spectral Analysis of Time Series PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483218546
Total Pages : 383 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis The Spectral Analysis of Time Series by : L. H. Koopmans

Download or read book The Spectral Analysis of Time Series written by L. H. Koopmans and published by Academic Press. This book was released on 2014-05-12 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Spectral Analysis of Time Series describes the techniques and theory of the frequency domain analysis of time series. The book discusses the physical processes and the basic features of models of time series. The central feature of all models is the existence of a spectrum by which the time series is decomposed into a linear combination of sines and cosines. The investigator can used Fourier decompositions or other kinds of spectrals in time series analysis. The text explains the Wiener theory of spectral analysis, the spectral representation for weakly stationary stochastic processes, and the real spectral representation. The book also discusses sampling, aliasing, discrete-time models, linear filters that have general properties with applications to continuous-time processes, and the applications of multivariate spectral models. The text describes finite parameter models, the distribution theory of spectral estimates with applications to statistical inference, as well as sampling properties of spectral estimates, experimental design, and spectral computations. The book is intended either as a textbook or for individual reading for one-semester or two-quarter course for students of time series analysis users. It is also suitable for mathematicians or professors of calculus, statistics, and advanced mathematics.

Machine Learning in Non-Stationary Environments

Download Machine Learning in Non-Stationary Environments PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262300435
Total Pages : 279 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in Non-Stationary Environments by : Masashi Sugiyama

Download or read book Machine Learning in Non-Stationary Environments written by Masashi Sugiyama and published by MIT Press. This book was released on 2012-03-30 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory, algorithms, and applications of machine learning techniques to overcome “covariate shift” non-stationarity. As the power of computing has grown over the past few decades, the field of machine learning has advanced rapidly in both theory and practice. Machine learning methods are usually based on the assumption that the data generation mechanism does not change over time. Yet real-world applications of machine learning, including image recognition, natural language processing, speech recognition, robot control, and bioinformatics, often violate this common assumption. Dealing with non-stationarity is one of modern machine learning's greatest challenges. This book focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) change but the conditional distribution of outputs (answers) is unchanged, and presents machine learning theory, algorithms, and applications to overcome this variety of non-stationarity. After reviewing the state-of-the-art research in the field, the authors discuss topics that include learning under covariate shift, model selection, importance estimation, and active learning. They describe such real world applications of covariate shift adaption as brain-computer interface, speaker identification, and age prediction from facial images. With this book, they aim to encourage future research in machine learning, statistics, and engineering that strives to create truly autonomous learning machines able to learn under non-stationarity.

Introduction to Time Series Analysis and Forecasting

Download Introduction to Time Series Analysis and Forecasting PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118745159
Total Pages : 670 pages
Book Rating : 4.1/5 (187 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Time Series Analysis and Forecasting by : Douglas C. Montgomery

Download or read book Introduction to Time Series Analysis and Forecasting written by Douglas C. Montgomery and published by John Wiley & Sons. This book was released on 2015-04-21 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition "...[t]he book is great for readers who need to apply the methods and models presented but have little background in mathematics and statistics." -MAA Reviews Thoroughly updated throughout, Introduction to Time Series Analysis and Forecasting, Second Edition presents the underlying theories of time series analysis that are needed to analyze time-oriented data and construct real-world short- to medium-term statistical forecasts. Authored by highly-experienced academics and professionals in engineering statistics, the Second Edition features discussions on both popular and modern time series methodologies as well as an introduction to Bayesian methods in forecasting. Introduction to Time Series Analysis and Forecasting, Second Edition also includes: Over 300 exercises from diverse disciplines including health care, environmental studies, engineering, and finance More than 50 programming algorithms using JMP®, SAS®, and R that illustrate the theory and practicality of forecasting techniques in the context of time-oriented data New material on frequency domain and spatial temporal data analysis Expanded coverage of the variogram and spectrum with applications as well as transfer and intervention model functions A supplementary website featuring PowerPoint® slides, data sets, and select solutions to the problems Introduction to Time Series Analysis and Forecasting, Second Edition is an ideal textbook upper-undergraduate and graduate-levels courses in forecasting and time series. The book is also an excellent reference for practitioners and researchers who need to model and analyze time series data to generate forecasts.

Analysis of Economic Time Series

Download Analysis of Economic Time Series PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483218880
Total Pages : 495 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Analysis of Economic Time Series by : Marc Nerlove

Download or read book Analysis of Economic Time Series written by Marc Nerlove and published by Academic Press. This book was released on 2014-05-10 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis of Economic Time Series: A Synthesis integrates several topics in economic time-series analysis, including the formulation and estimation of distributed-lag models of dynamic economic behavior; the application of spectral analysis in the study of the behavior of economic time series; and unobserved-components models for economic time series and the closely related problem of seasonal adjustment. Comprised of 14 chapters, this volume begins with a historical background on the use of unobserved components in the analysis of economic time series, followed by an Introduction to the theory of stationary time series. Subsequent chapters focus on the spectral representation and its estimation; formulation of distributed-lag models; elements of the theory of prediction and extraction; and formulation of unobserved-components models and canonical forms. Seasonal adjustment techniques and multivariate mixed moving-average autoregressive time-series models are also considered. Finally, a time-series model of the U.S. cattle industry is presented. This monograph will be of value to mathematicians, economists, and those interested in economic theory, econometrics, and mathematical economics.

Introduction to Time Series and Forecasting

Download Introduction to Time Series and Forecasting PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475725264
Total Pages : 429 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Time Series and Forecasting by : Peter J. Brockwell

Download or read book Introduction to Time Series and Forecasting written by Peter J. Brockwell and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.

Unit Roots, Cointegration, and Structural Change

Download Unit Roots, Cointegration, and Structural Change PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521587822
Total Pages : 528 pages
Book Rating : 4.5/5 (878 download)

DOWNLOAD NOW!


Book Synopsis Unit Roots, Cointegration, and Structural Change by : G. S. Maddala

Download or read book Unit Roots, Cointegration, and Structural Change written by G. S. Maddala and published by Cambridge University Press. This book was released on 1998 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of unit roots, cointegration and structural change from a best-selling author.

Nonlinear Time Series Analysis

Download Nonlinear Time Series Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521529020
Total Pages : 390 pages
Book Rating : 4.5/5 (29 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Time Series Analysis by : Holger Kantz

Download or read book Nonlinear Time Series Analysis written by Holger Kantz and published by Cambridge University Press. This book was released on 2004 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The paradigm of deterministic chaos has influenced thinking in many fields of science. Chaotic systems show rich and surprising mathematical structures. In the applied sciences, deterministic chaos provides a striking explanation for irregular behaviour and anomalies in systems which do not seem to be inherently stochastic. The most direct link between chaos theory and the real world is the analysis of time series from real systems in terms of nonlinear dynamics. Experimental technique and data analysis have seen such dramatic progress that, by now, most fundamental properties of nonlinear dynamical systems have been observed in the laboratory. Great efforts are being made to exploit ideas from chaos theory wherever the data displays more structure than can be captured by traditional methods. Problems of this kind are typical in biology and physiology but also in geophysics, economics, and many other sciences.

Nonlinear Time Series Analysis

Download Nonlinear Time Series Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119264065
Total Pages : 516 pages
Book Rating : 4.1/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Time Series Analysis by : Ruey S. Tsay

Download or read book Nonlinear Time Series Analysis written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2018-09-13 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.