Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Stability And Local Accuracy Of Numerical Methods For Ordinary Differential Equations
Download Stability And Local Accuracy Of Numerical Methods For Ordinary Differential Equations full books in PDF, epub, and Kindle. Read online Stability And Local Accuracy Of Numerical Methods For Ordinary Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Numerical Solution of Ordinary Differential Equations by : Kendall Atkinson
Download or read book Numerical Solution of Ordinary Differential Equations written by Kendall Atkinson and published by John Wiley & Sons. This book was released on 2011-10-24 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLABĀ® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.
Book Synopsis Computer Solution of Ordinary Differential Equations by : Lawrence F. Shampine
Download or read book Computer Solution of Ordinary Differential Equations written by Lawrence F. Shampine and published by W.H. Freeman. This book was released on 1975 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Numerical Methods for Initial Value Problems in Ordinary Differential Equations by : Simeon Ola Fatunla
Download or read book Numerical Methods for Initial Value Problems in Ordinary Differential Equations written by Simeon Ola Fatunla and published by . This book was released on 1988 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque
Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Book Synopsis Numerical Methods for Ordinary Differential Equations by : David F. Griffiths
Download or read book Numerical Methods for Ordinary Differential Equations written by David F. Griffiths and published by Springer Science & Business Media. This book was released on 2010-11-11 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com
Book Synopsis General Linear Methods for Ordinary Differential Equations by : Zdzislaw Jackiewicz
Download or read book General Linear Methods for Ordinary Differential Equations written by Zdzislaw Jackiewicz and published by John Wiley & Sons. This book was released on 2009-08-14 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to develop numerical methods for ordinary differential equations General Linear Methods for Ordinary Differential Equations fills a gap in the existing literature by presenting a comprehensive and up-to-date collection of recent advances and developments in the field. This book provides modern coverage of the theory, construction, and implementation of both classical and modern general linear methods for solving ordinary differential equations as they apply to a variety of related areas, including mathematics, applied science, and engineering. The author provides the theoretical foundation for understanding basic concepts and presents a short introduction to ordinary differential equations that encompasses the related concepts of existence and uniqueness theory, stability theory, and stiff differential equations and systems. In addition, a thorough presentation of general linear methods explores relevant subtopics such as pre-consistency, consistency, stage-consistency, zero stability, convergence, order- and stage-order conditions, local discretization error, and linear stability theory. Subsequent chapters feature coverage of: Differential equations and systems Introduction to general linear methods (GLMs) Diagonally implicit multistage integration methods (DIMSIMs) Implementation of DIMSIMs Two-step Runge-Kutta (TSRK) methods Implementation of TSRK methods GLMs with inherent Runge-Kutta stability (IRKS) Implementation of GLMs with IRKS General Linear Methods for Ordinary Differential Equations is an excellent book for courses on numerical ordinary differential equations at the upper-undergraduate and graduate levels. It is also a useful reference for academic and research professionals in the fields of computational and applied mathematics, computational physics, civil and chemical engineering, chemistry, and the life sciences.
Book Synopsis The Numerical Analysis of Ordinary Differential Equations by : J. C. Butcher
Download or read book The Numerical Analysis of Ordinary Differential Equations written by J. C. Butcher and published by . This book was released on 1987-02-24 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical and computational introduction. The Euler method and its generalizations. Analysis of Runge-Kutta methods. General linear methods.
Book Synopsis Numerical Analysis of Ordinary Differential Equations and Its Applications by : Taketomo Mitsui
Download or read book Numerical Analysis of Ordinary Differential Equations and Its Applications written by Taketomo Mitsui and published by World Scientific. This book was released on 1995 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book collects original articles on numerical analysis of ordinary differential equations and its applications. Some of the topics covered in this volume are: discrete variable methods, Runge-Kutta methods, linear multistep methods, stability analysis, parallel implementation, self-validating numerical methods, analysis of nonlinear oscillation by numerical means, differential-algebraic and delay-differential equations, and stochastic initial value problems.
Book Synopsis Numerical Methods for Delay Differential Equations by : Alfredo Bellen
Download or read book Numerical Methods for Delay Differential Equations written by Alfredo Bellen and published by Numerical Mathematics and Scie. This book was released on 2013-01-10 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique book describes, analyses, and improves various approaches and techniques for the numerical solution of delay differential equations. It includes a list of available codes and also aids the reader in writing his or her own.
Book Synopsis A First Course in the Numerical Analysis of Differential Equations by : A. Iserles
Download or read book A First Course in the Numerical Analysis of Differential Equations written by A. Iserles and published by Cambridge University Press. This book was released on 2009 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.
Book Synopsis Differential Equations, Mechanics, and Computation by : Richard S. Palais
Download or read book Differential Equations, Mechanics, and Computation written by Richard S. Palais and published by American Mathematical Soc.. This book was released on 2009-11-13 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a conceptual introduction to the theory of ordinary differential equations, concentrating on the initial value problem for equations of evolution and with applications to the calculus of variations and classical mechanics, along with a discussion of chaos theory and ecological models. It has a unified and visual introduction to the theory of numerical methods and a novel approach to the analysis of errors and stability of various numerical solution algorithms based on carefully chosen model problems. While the book would be suitable as a textbook for an undergraduate or elementary graduate course in ordinary differential equations, the authors have designed the text also to be useful for motivated students wishing to learn the material on their own or desiring to supplement an ODE textbook being used in a course they are taking with a text offering a more conceptual approach to the subject.
Book Synopsis Computer Modelling of Electrical Power Systems by : Jos Arrillaga
Download or read book Computer Modelling of Electrical Power Systems written by Jos Arrillaga and published by . This book was released on 1983 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes the use of power system component models and efficient computational techniques in the development of a new generation of programs representing the steady and dynamic states of electrical power systems. Presents main computational and transmission system developments. Derives steady state models of a.c. and d.c. power systems plant components, describes a general purpose phase a.c. load flow program emphasizing Newton Fast Decoupled Algorithm, and more. Considers all aspects of the power system in the dynamic state.
Book Synopsis The Concept of Stability in Numerical Mathematics by : Wolfgang Hackbusch
Download or read book The Concept of Stability in Numerical Mathematics written by Wolfgang Hackbusch and published by Springer Science & Business Media. This book was released on 2014-02-06 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the author compares the meaning of stability in different subfields of numerical mathematics. Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations. In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.
Book Synopsis Random Ordinary Differential Equations and Their Numerical Solution by : Xiaoying Han
Download or read book Random Ordinary Differential Equations and Their Numerical Solution written by Xiaoying Han and published by Springer. This book was released on 2017-10-25 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs). RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems. They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor expansions in the usual sense. However, Taylor-like expansions can be derived for RODEs using an iterated application of the appropriate chain rule in integral form, and represent the starting point for the systematic derivation of consistent higher order numerical schemes for RODEs. The book is directed at a wide range of readers in applied and computational mathematics and related areas as well as readers who are interested in the applications of mathematical models involving random effects, in particular in the biological sciences.The level of this book is suitable for graduate students in applied mathematics and related areas, computational sciences and systems biology. A basic knowledge of ordinary differential equations and numerical analysis is required.
Book Synopsis Stable Implicit and Explicit Numerical Methods for Integrating Quasi-linear Differential Equations with Parasitic-stiff and Parasitic-saddle Eigenvalues by : Harvard Lomax
Download or read book Stable Implicit and Explicit Numerical Methods for Integrating Quasi-linear Differential Equations with Parasitic-stiff and Parasitic-saddle Eigenvalues written by Harvard Lomax and published by . This book was released on 1968 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Order Stars written by A. Iserles and published by CRC Press. This book was released on 2020-11-26 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book familiarizes the mathematical community with an analytic tool that is capable of so many applications and presents a list of open problems which might be amenable to analysis with order stars.
Book Synopsis Solving ODEs with MATLAB by : Lawrence F. Shampine
Download or read book Solving ODEs with MATLAB written by Lawrence F. Shampine and published by Cambridge University Press. This book was released on 2003-04-28 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.