Spring Chinook Salmon Supplementation in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project, Project Overview, 2003-2004 Annual Report

Download Spring Chinook Salmon Supplementation in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project, Project Overview, 2003-2004 Annual Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 24 pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Spring Chinook Salmon Supplementation in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project, Project Overview, 2003-2004 Annual Report by : Todd N. Pearsons

Download or read book Spring Chinook Salmon Supplementation in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project, Project Overview, 2003-2004 Annual Report written by Todd N. Pearsons and published by . This book was released on 2004 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 5 of 7, 2003-2004 Annual Report

Download Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 5 of 7, 2003-2004 Annual Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 68 pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 5 of 7, 2003-2004 Annual Report by : Christopher L. Johnson

Download or read book Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 5 of 7, 2003-2004 Annual Report written by Christopher L. Johnson and published by . This book was released on 2004 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997; James et al. 1999; Pearsons et al., 2003). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation is working or not working (Busack et al. 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Three areas of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocial salmon monitoring (abundance). This report is organized into three chapters to represent these three areas of investigation. Data were collected during the summer and fall, 2003 in index sections of the upper Yakima Basin (Figure 1). Previous results on the topics in this report were reported in James et al. (1999), and Pearsons et al. (2003). Hatchery-reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

Spring Chinook Salmon Interactions Indices and Residual/Precocious Male Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report

Download Spring Chinook Salmon Interactions Indices and Residual/Precocious Male Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 121 pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Spring Chinook Salmon Interactions Indices and Residual/Precocious Male Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report by : Christopher L. Johnson

Download or read book Spring Chinook Salmon Interactions Indices and Residual/Precocious Male Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report written by Christopher L. Johnson and published by . This book was released on 2005 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997; James et al. 1999; Pearsons et al., 2003; Pearsons et al. 2004). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation is working or not working (Busack et al. 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Topics of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocious male salmon monitoring (abundance); (4) performance of growth modulation in reducing precocious males during spawning; (5) incidence of predation by residualized chinook salmon; and (6) benefits of salmon carcasses to juvenile salmonids. This report is organized into six chapters to represent these topics of investigation. Data were collected during the summer and fall, 2004 in index sections of the upper Yakima Basin (Figure 1). Previous results on the topics in this report were reported in James et al. (1999), and Pearsons et al. (2003; 2004). Hatchery-reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

Yakima

Download Yakima PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 26 pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Yakima by :

Download or read book Yakima written by and published by . This book was released on 2005 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Yakima/Klickitat Fisheries Project (YKFP) is on schedule to ascertain whether new artificial production techniques can be used to increase harvest and natural production of spring Chinook salmon while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits. The Cle Elum Supplementation and Research Facility (CESRF) collected its first spring chinook brood stock in 1997, released its first fish in 1999, and age-4 adults have been returning since 2001. In these initial years of CESRF operation, recruitment of hatchery origin fish has exceeded that of fish spawning in the natural environment, but early indications are that hatchery origin fish are not as successful at spawning in the natural environment as natural origin fish when competition is relatively high. When competition is reduced, hatchery fish produced similar numbers of progeny as their wild counterparts. Most demographic variables are similar between natural and hatchery origin fish, however hatchery origin fish were smaller-at-age than natural origin fish. Long-term fitness of the target population is being evaluated by a large-scale test of domestication. Slight changes in predation vulnerability and competitive dominance, caused by domestication, were documented. Distribution of spawners has increased as a result of acclimation site location and salmon homing fidelity. Semi-natural rearing and predator avoidance training have not resulted in significant increases in survival of hatchery fish. However, growth manipulations in the hatchery appear to be reducing the number of precocious males produced by the YKFP and consequently increasing the number of migrants. Genetic impacts to non-target populations appear to be low because of the low stray rates of YKFP fish. Ecological impacts to valued non-target taxa were within containment objectives or impacts that were outside of containment objectives were not caused by supplementation activities. Some fish and bird piscivores have been estimated to consume large numbers of salmonids in the Yakima Basin. Natural production of Chinook salmon in the upper Yakima Basin appears to be density dependent under current conditions and may constrain the benefits of supplementation. However, such constraints (if they exist) could be countered by YKFP habitat actions that have resulted in: the protection of over 900 acres of prime floodplain habitat, reconnection and screening of over 15 miles of tributary habitat, substantial water savings through irrigation improvements, and restoration of over 80 acres of floodplain and side channels. Harvest opportunities for tribal and non-tribal fishers have also been enhanced, but are variable among years. The YKFP is still in the early stages of evaluation, and as such the data and findings presented in this report should be considered preliminary until further data is collected and analyses completed. Nonetheless, the YKFP has produced significant findings, and produced methodologies that can be used to evaluate and improve supplementation. A summary table of topical area performance is presented.

Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report

Download Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 60 pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report by : Christopher L. Johnson

Download or read book Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report written by Christopher L. Johnson and published by . This book was released on 2003 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation is working or not working (Busack et al. 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Three areas of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocial salmon monitoring (abundance). This report is organized into three chapters to represent these three areas of investigation. Data were collected during the summer and fall, 2002 in index sections of the upper Yakima Basin (Figure 1). Hatchery reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

Yakima/Klickitat Fisheries Project Genetic Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 1 of 7, 2003-2004 Annual Report

Download Yakima/Klickitat Fisheries Project Genetic Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 1 of 7, 2003-2004 Annual Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 153 pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Yakima/Klickitat Fisheries Project Genetic Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 1 of 7, 2003-2004 Annual Report by : Craig A. Busack

Download or read book Yakima/Klickitat Fisheries Project Genetic Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 1 of 7, 2003-2004 Annual Report written by Craig A. Busack and published by . This book was released on 2004 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic work for 2003, as in previous years, was quite diverse. In chapter 1 we report on the use of DNA microsatellite markers to sex spring chinook collected at Roza. We have learned through comparison of sex determinations at Roza and then at CESRF that sexing green fish on the basis of morphology is somewhat inaccurate, and accurate sexing of fish at Roza is needed to estimate sex ratios of fish on the spawning grounds. Using DNA microsatellite markers, sexing accuracy was high, but not perfect. In chapter 2 we report on new genetic risk concepts currently being developed and their implications for the YKFP spring chinook program. The impact on domestication of gene flow between the natural and hatchery spawning components is now much better understood. It is now possible to compare the risk of different hatchery programs much more quantitatively in the past. Thus, we can now make good predictions of how much less domesticating the Yakima spring chinook supplementation effort is than other programs. In chapter 3 we present the initial results of morphological comparisons of adult (1) hatchery-origin Upper Yakima spring chinook, (2) natural-origin U. Yakima spring chinook, and (3) Naches spring chinook. Canonical variate analysis allowed both sexes of the three groups to be classified correctly with over accuracy. The differences are subtle, but hatchery-origin fish appear to be someone thinner than natural-origin fish. This is consistent with observations of hatchery vs wild morphology in coho. In chapter 4 we describe the ongoing work to refine the Domestication Research/Monitoring Plan. Work for last year included analysis of the impact of HC line precocious males spawning in the wild, development of a misting incubation system for off-site incubation of Naches eggs, and refinement of some aspects of experimental design. The misting incubation system has broad applicability outside the project. The most recent version of the domestication monitoring plan is included as an appendix. In chapter 5 we present a final report on computer simulations of factorial mating designs. Using three different schemes for combining breeding values of fish, we found that full factorial mating offers a substantial increase in effective size over single-pair mating. Although full factorial mating may be too difficult logistically, but a significant proportion of the full factorial mating advantage can be obtained by using 2 x 2 partial factorials. We have developed a method that allows us to determine the relative effective size advantage of mixed partial factorial designs. In chapter 6 we report on an analysis of stock origin of smolts collected at Chandler. The 702 Chinook salmon smolts collected at the Chandler trap in 2003 were screened at 12 microsatellite DNA loci. A new Yakima basin baseline, consisting of spring chinook from the upper Yakima, Naches, and American River populations and fall chinook from the Marion Drain and lower Yakima populations, was created for these same 12 loci. DNA template problems with the tissue collections from the Naches, and American River populations prompted the omission of four loci prior to analysis. The results indicated: 80% Naches spring, 13% American River spring, 7% upper Yakima spring, and less than 1% for the two fall populations combined. The estimated stock proportions in the 2003 Chandler collection differed substantially from those for the 2002 collection. The temporal pattern of sampling in both Chandler smolt collections was not proportional to the observed outmigration in each year, suggesting that both of these estimates should be regarded with caution. Strengthening of the baseline data set will be a high priority for future work with Chandler smolts.

Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 3 of 7, 2003-2004 Annual Report

Download Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 3 of 7, 2003-2004 Annual Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 95 pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 3 of 7, 2003-2004 Annual Report by : Curtis Knudsen

Download or read book Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 3 of 7, 2003-2004 Annual Report written by Curtis Knudsen and published by . This book was released on 2004 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the third in a series of annual reports that address reproductive ecological research and comparisons of hatchery and wild origin spring chinook in the Yakima River basin. Data have been collected prior to supplementation to characterize the baseline reproductive ecology, demographics and phenotypic traits of the unsupplemented upper Yakima population, however this report focuses on data collected on hatchery and wild spring chinook returning in 2003; the third year of hatchery adult returns. This report is organized into three chapters, with a general introduction preceding the first chapter and summarizes data collected between April 1, 2003 and March 31, 2004 in the Yakima basin. Summaries of each of the chapters in this report are included below. A major component of determining supplementation success in the Yakima Klickitat Fishery Project's spring chinook (Oncorhynchus tshawytscha) program is an increase in natural production. Within this context, comparing upper Yakima River hatchery and wild origin fish across traits such as sex ratio, age composition, size-at-age, fecundity, run timing and gamete quality is important because these traits directly affect population productivity and individual fish fitness which determine a population's productivity.

Yakima River Species Interactions Study; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 7 of 7, 2003-2004 Annual Report

Download Yakima River Species Interactions Study; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 7 of 7, 2003-2004 Annual Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 93 pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Yakima River Species Interactions Study; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 7 of 7, 2003-2004 Annual Report by : Todd N. Pearsons

Download or read book Yakima River Species Interactions Study; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 7 of 7, 2003-2004 Annual Report written by Todd N. Pearsons and published by . This book was released on 2004 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the twelfth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2003 and December 31, 2003. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may be limited by strong ecological interactions such as predation or competition (Busack et al. 1997). Our work has adapted to new information needs as the YKFP has evolved. Initially, our work focused on interactions between anadromous steelhead and resident rainbow trout (for explanation see Pearsons et al. 1993), then interactions between spring chinook salmon and rainbow trout, and recently interactions between spring chinook salmon and highly valued non-target taxa (NTT; e.g., bull trout); and interactions between strong interactor taxa (e.g., those that may strongly influence the abundance of spring chinook salmon; e.g., smallmouth bass) and spring chinook salmon. The change in emphasis to spring chinook salmon has largely been influenced by the shift in the target species planned for supplementation (Bonneville Power Administration et al. 1996; Fast and Craig 1997). Originally, steelhead and spring chinook salmon were proposed to be supplemented simultaneously (Clune and Dauble 1991). However, due in part to the uncertainties associated with interactions between steelhead and rainbow trout, spring chinook and coho salmon were supplemented before steelhead. This redirection in the species to be supplemented has prompted us to prioritize interactions between spring chinook and rainbow trout, while beginning to investigate other ecological interactions of concern. Prefacility monitoring of variables such as rainbow trout density, distribution, and size structure was continued and monitoring of other NTT was initiated in 1997. This report is organized into three chapters that represent major topics associated with monitoring stewardship, utilization, and strong interactor taxa. Chapter 1 reports the results of non-target taxa monitoring after the fifth release of hatchery salmon smolts in the upper Yakima River basin. Chapter 2 describes our tributary sampling methodology for monitoring the status of tributary NTT. Chapter 3 describes predation on juvenile salmonids by smallmouth bass and channel catfish in the lower Yakima River. The chapters in this report are in various stages of development and should be considered preliminary unless they have been published in a peer-reviewed journal. Additional field-work and/or analysis is in progress for topics covered in this report. Throughout this report, a premium was placed on presenting data in tables so that other interested parties could have access to the data. Readers are cautioned that any preliminary conclusions are subject to future revision as more data and analytical results become available.

Yakima/Klickitat Fisheries Project; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2002-2003 Annual Report

Download Yakima/Klickitat Fisheries Project; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2002-2003 Annual Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 23 pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Yakima/Klickitat Fisheries Project; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2002-2003 Annual Report by : Todd N. Pearsons

Download or read book Yakima/Klickitat Fisheries Project; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2002-2003 Annual Report written by Todd N. Pearsons and published by . This book was released on 2003 with total page 23 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Yakima/Klickitat Fisheries Project (YKFP) is a supplementation project sponsored by the Northwest Power Planning Council and funded by the Bonneville Power Administration. The YKFP has adopted the definition of supplementation described by Regional Assessment of Supplementation Program (1992), which is ''the use of artificial propagation in an attempt to maintain or increase natural production while maintaining the long-term fitness of the target population, and keeping the ecological and genetic impacts on nontarget populations within specified biological limits''. Recent scientific reviews of hatchery supplementation continue to highlight the experimental nature and risk of supplementation (Independent Scientific Group 1996; National Research Council 1996; Lichatowich 1999; Independent Multidisciplinary Science Team 2000; Independent Scientific Advisory Board 2003; Hatchery Scientific Review Group 2003). In addition, many of these reviews included recommendations about the best ways to operate a supplementation program. Most of these recommendations were already being done or have been incorporated into the YKFP. The objectives of the YKFP are: (1) to test the hypothesis that new supplementation techniques can be used in the Yakima River Basin to increase natural production and to improve harvest opportunities while maintaining the long-term genetic fitness of the wild and native salmonid populations and keeping adverse ecological interactions within acceptable limits (Yakima Fisheries Project Final Environment Impact Statement, 1996); (2) provide knowledge about the use of supplementation, so that it may be used to mitigate effects on anadromous fisheries throughout the Columbia River Basin; (3) to maintain and improve the quantity and productivity of salmon and steelhead habitat, including those areas made accessible by habitat improvements; (4) to ensure that Project implementation remains consistent with the Council's Fish and Wildlife Program; and (5) to implement the Project in a prudent and environmentally sound manner. Current YKFP operations have been designed to test the principles of supplementation (Busack et al. 1997). The Project's experimental design has focused on the following critical uncertainties affecting supplementation: (1) The survival and reproductive success of hatchery fish after release from the hatchery; (2) The impacts of hatchery fish as they interact with non-target species and stocks; and, (3) The effects of supplementation on the long-term genetic fitness of fish stocks. The YKFP endorses an adaptive management policy applied through a project management framework as described in the Yakima/Klickitat Fisheries Project Planning Status Report (1995), Fast and Craig (1997), and Clune and Dauble 1991. The project is managed by a Policy Group consisting of a representative of the Yakama Nation (YN, lead agency) and a representative of the Washington Department of Fish and Wildlife (WDFW). The functions of the parties are described in an MOU between the YN and the WDFW. A Scientific and Technical Advisory Committee (STAC) consisting of one representative from each management entity reports to the Policy Group and provides technical input on policy and other issues. Additional committee's, such as the Monitoring Implementation and Planning Team (MIPT), serve at the discretion of STAC. The Policy Group and STAC meet periodically (usually monthly) to conduct the business of the YKFP. Although the YKFP is an all stocks initiative (BPA 1996), most effort to date has been directed at spring chinook salmon and coho salmon. This report is a compilation of the year's activities between August 1, 2002 and July 31, 2003. The Yakama Nation's portion of the YKFP is presented in another report. All findings should be considered preliminary until data collection is completed or the information is published in a peer-reviewed journal. Pearsons and Easterbrooks (2003) described last year's activities.

Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 6 of 7, 2003-2004 Annual Report

Download Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 6 of 7, 2003-2004 Annual Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 11 pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 6 of 7, 2003-2004 Annual Report by : Joan B. Thomas

Download or read book Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 6 of 7, 2003-2004 Annual Report written by Joan B. Thomas and published by . This book was released on 2004 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1999 the Cle Elum Hatchery began releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. Part of the evaluation of this program is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. In 1998 and 2000 through 2003 naturally produced smolts were collected for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, with a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. To date, only the bacterial pathogens have been detected and prevalences have been low. Prevalences have varied each year and these changes are attributed to normal fluctuation of prevalence. All of the pathogens detected are widely distributed in Washington State.

Yakima River Species Interactions Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report

Download Yakima River Species Interactions Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 114 pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Yakima River Species Interactions Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report by : Todd N. Pearsons

Download or read book Yakima River Species Interactions Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report written by Todd N. Pearsons and published by . This book was released on 2005 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the thirteenth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003, Pearsons et al. 2004). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2004 and December 31, 2004. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may be limited by strong ecological interactions such as predation or competition (Busack et al. 1997). Our work has adapted to new information needs as the YKFP has evolved. Initially, our work focused on interactions between anadromous steelhead and resident rainbow trout (for explanation see Pearsons et al. 1993), then interactions between spring chinook salmon and rainbow trout, and recently interactions between spring chinook salmon and highly valued non-target taxa (NTT; e.g., bull trout); and interactions between strong interactor taxa (e.g., those that may strongly influence the abundance of spring chinook salmon; e.g., smallmouth bass) and spring chinook salmon. The change in emphasis to spring chinook salmon has largely been influenced by the shift in the target species planned for supplementation (Bonneville Power Administration et al. 1996; Fast and Craig 1997). Originally, steelhead and spring chinook salmon were proposed to be supplemented simultaneously (Clune and Dauble 1991). However, due in part to the uncertainties associated with interactions between steelhead and rainbow trout, spring chinook and coho salmon were supplemented before steelhead. This redirection in the species to be supplemented has prompted us to prioritize interactions between spring chinook and rainbow trout, while beginning to investigate other ecological interactions of concern. Prefacility monitoring of variables such as rainbow trout density, distribution, and size structure was continued and monitoring of other NTT was initiated in 1997. This report is organized into five chapters that represent major topics associated with monitoring stewardship, utilization, and strong interactor taxa. Chapter 1 reports the results of non-target taxa monitoring after the sixth release of hatchery salmon smolts in the upper Yakima River Basin. Chapter 2 reports on the impacts of supplementation and reintroduction of salmon to trout. Chapter 2 was submitted as a manuscript to the North American Journal of Fisheries Management. Chapter 3 is an essay that describes the problems associated with popular population estimators. This essay was submitted to Fisheries magazine. Chapter 4 describes an evaluation of recovery times on mark-recapture and multiple removal population estimates. Chapter 4 was submitted to the North American Journal of Fisheries Management as a manuscript. Chapter 5, which was submitted as a manuscript to Transactions of the American Fisheries Society, describes the role of predator and prey size in evaluating predation risk by smallmouth bass in the Yakima River. The chapters in this report are in various stages of development and should be considered preliminary unless they have been published in a peer-reviewed journal. Additional field-work and/or analysis is in progress for topics covered in this report.

Comparing the Reproductive Success of Yakima River Hatchery- and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report

Download Comparing the Reproductive Success of Yakima River Hatchery- and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 40 pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Comparing the Reproductive Success of Yakima River Hatchery- and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report by : C. M. Knudsen

Download or read book Comparing the Reproductive Success of Yakima River Hatchery- and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report written by C. M. Knudsen and published by . This book was released on 2005 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt: A growing body of literature suggests that adult salmon produced by artificial culture are not as reproductively successful as wild fish when they spawn under natural conditions. Behavioral, morphological, and physiological divergences have been observed between hatchery and wild fish. These disparities are the likely proximate causes of the differences seen in the reproductive success of hatchery and wild salmonids. Two evolutionary paradigms have been proposed to explain why salmonids cultured in hatcheries are genetically and phenotypically different from wild cohorts. The first proposes that natural selection has been significantly relaxed in hatcheries. Consequently, fish that normally would have perished because of the possession of unsuitable traits are able to survive. If these traits have a genetic basis, they may become established in a hatchery population and cause its productivity to be less than expected if the fish are once again exposed to natural selection pressures. The second theorizes that environmental and social conditions in hatcheries are less variable than in the natural environment and that these conditions will remain relatively constant from one generation to the next. In this circumstance, selection for genetic traits that adapt fish to artificial culture will become prevalent in the population. Such traits may be mal-adaptive under natural conditions. Many of the studies that have compared the reproductive success (RS) of hatchery and wild fish, however, have used non-local hatchery fish that have experienced multiple generations of hatchery culture. Few efforts have been made where both the hatchery and wild fish have originated from the same population. When such studies have been performed differences in the competency of the fish to produce offspring have not been detected or are not as great as those expressed when non-local hatchery fish have been used. The hatchery spring Chinook produced by the Yakima Fisheries Project originated from wild fish returning to the upper Yakima River. When they return as adults, almost all of them will spawn naturally in the Yakima River. The offspring they produce are expected to augment the Yakima spring Chinook population. Whether such an increase will occur or how great it may be depends on two factors, the ability of hatchery fish to reproduce under natural conditions and the capacity of their offspring to survive to maturity. One of the objectives of the Yakima Fisheries Project is to determine whether the hatchery-origin adults produced by the project have experienced any reduction in their ability to reproduce under natural conditions. To accomplish that objective an observation stream was built in 2000 on the grounds of the Cle Elum Supplementation and Research Facility. Beginning in 2001 hatchery and wild spring Chinook from the upper Yakima River stock have been introduced into the stream and allowed to reproduce. Microsatellite DNA is used to establish the genetic relationships between the adults placed into the stream and fry that are produced by each population. Six populations consisting of mixtures of wild and hatchery fish have been placed into the stream. Pedigree assessments have been completed on five of them. These assessments have shown that the reproductive success in males is often twice as variable as that experienced by females. In the five populations so far examined; wild males (age 4 and 5) produced the most offspring. The success of comparable hatchery males relative to wild males ranged from 37% to 113%. Hatchery and wild males maturing as 3-yr-olds (jacks) and as 1- and 0-yr-olds (precocious males) were also used in the study populations. They were not as successful at producing offspring as the larger hatchery and wild males. During 2001 and 2002 two populations of hatchery and wild fish were placed into the observation stream each year. Each one occupied about half of the structure. In these populations wild females exhibited a superior capacity to deposit eggs. In addition, their eggs survived to the fry stage at higher rates. This survival advantage ranged from 1.9 to 11.7%. In 2003 the entire observation stream was made available to a single population of fish in an effort to reduce intrasexual competition among the females for redd locations. In this year, hatchery females were better at depositing eggs (12.5%) and their buried eggs also achieved a higher egg-to-fry survival rate (3.4%). This suggests that at low population levels hatchery females were as competent as wild fish in burying eggs and in producing fry. Although variation in the reproductive success of females was lower than that seen in males it could be quite variable. For example, coefficient of variation values calculated on female RS ranged from 34 to 77% in the populations we examined. Numerous factors may affect RS in females.

Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report

Download Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 89 pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report by : Steven L. Schroder

Download or read book Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report written by Steven L. Schroder and published by . This book was released on 2005 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning and (2) summarize results of research that have broader scientific relevance. This is the fourth in a series of reports that address reproductive ecological research and monitoring of spring chinook populations in the Yakima River basin. This annual report summarizes data collected between April 1, 2004 and March 31, 2005 and includes analyses of historical baseline data, as well. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2004) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. The first chapter of this report compares first generation hatchery and wild upper Yakima River spring chinook returns over a suite of life-history, phenotypic and demographic traits. The second chapter deals specifically with identification of putative populations of wild spring chinook in the Yakima River basin based on differences in quantitative and genetic traits. The third chapter is a progress report on gametic traits and progeny produced by upper Yakima River wild and hatchery origin fish spawned in 2004 including some comparisons with Little Naches River fish. In the fourth chapter, we present a progress report on comparisons naturally spawning wild and hatchery fish in the upper Yakima River and in an experimental spawning channel at CESRF in 2004. The chapters in this report are in various stages of development. Chapters One and Two will be submitted for peer reviewed publication. Chapters Three and Four should be considered preliminary and additional fieldwork and/or analysis are in progress related to these topics. Readers are cautioned that any preliminary conclusions are subject to future revision as more data and analytical results become available.

Effects of Domestication on Predation Mortality and Competitive Dominance; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 2 of 7, 2003-2004 Annual Report

Download Effects of Domestication on Predation Mortality and Competitive Dominance; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 2 of 7, 2003-2004 Annual Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 36 pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Effects of Domestication on Predation Mortality and Competitive Dominance; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 2 of 7, 2003-2004 Annual Report by : Todd N. Pearsons

Download or read book Effects of Domestication on Predation Mortality and Competitive Dominance; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 2 of 7, 2003-2004 Annual Report written by Todd N. Pearsons and published by . This book was released on 2004 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the first of a series of progress reports that address the effects of hatchery domestication on predation mortality and competitive dominance in the upper Yakima River basin. This progress report summarizes data collected between January 1, 2003 and December 31, 2003. Raising fish in hatcheries can cause unintended behavioral, physiological, or morphological changes in chinook salmon due to domestication selection. Domestication selection is defined by Busack and Currens 1995 as, ''changes in quantity, variety, or combination of alleles within a captive population or between a captive population and its source population in the wild as a result of selection in an artificial environment''. Selection in artificial environments could be due to intentional or artificial selection, biased sampling during some stage of culture, or unintentional selection (Busack and Currens 1995). Genetic changes can result in lowered survival in the natural environment (Reisenbichler and Rubin 1999). The goal of supplementation or conservation hatcheries is to produce fish that will integrate into natural populations. Conservation hatcheries attempt to minimize intentional or biased sampling so that the hatchery fish are similar to naturally produced fish. However, the selective pressures in hatcheries are dramatically different than in the wild, which can result in genetic differences between hatchery and wild fish. The selective pressures may be particularly prominent during the freshwater rearing stage where most mortality of wild fish occurs. The Yakima Fisheries Project is studying the effects of domestication on a variety of adult and juvenile traits of spring chinook salmon (Busack et al. 2003). The overall experimental design is to compare a variety of traits, across generations, from three lines of Yakima basin chinook, a hatchery control, supplementation line, and a wild control. The hatchery line was derived from wild upper Yakima broodstock and is only allowed to spawn in the hatchery. The supplementation line is upper Yakima stock that spawns in the upper Yakima River. This stock is an integration of wild and hatchery supplementation fish. Starting in 2005, we plan to use a wild control line of fish that will be the offspring of wild broodstock collected in the Naches River system, a tributary to the Yakima River. The Naches River is not stocked with hatchery fish, and there is minimal stray from Upper Yakima supplementation, so we believe that these will serve as a control to compare any genotypic changes in the hatchery and the supplementation line. As generations of fish are tested, we believe we will be able to analyze the data using an analysis of covariance to test the hypothesis that the hatchery line will exhibit greater domestication over generations, the wild line will remain at baseline levels, and the supplementation line will be somewhere in between. In this report, we have used the terms ''hatchery'' or ''supplementation'' to refer to upper Yakima fish that are progeny of fish that spent one generation in the hatchery, and ''wild'' to refer to fish that have had no exposure to the hatchery other than the matings for this experiment. The terms are relative to the parents that produced the fish for these experiments. All progeny of these fish were mated and reared under the same laboratory conditions. This report addresses two juvenile traits: predation mortality, and competitive dominance. Other traits will be presented in other project reports. It is anticipated that it will take at least two to five generations to detect measurable responses in many domestication response variables (Busack et al. 2003). This report addresses domestication after one generation of hatchery rearing. This report is organized into two chapters that represent major topics associated with monitoring hatchery domestication. Chapter 1 reports the results of domestication on predation mortality of juvenile spring chinook salmon. Chapter 2 describes the affects of domestication on competitive dominance of juvenile spring chinook salmon. The chapters in this report are in various stages of development and should be considered preliminary unless they have been published in a peer-reviewed journal. Additional field work and/or analysis is in progress for topics covered in this report. Throughout this report, a premium was placed on presenting data in tables so that other interested parties could have access to the data.

Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project ; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report

Download Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project ; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 84 pages
Book Rating : 4.:/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project ; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report by :

Download or read book Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project ; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report written by and published by . This book was released on 1999 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions).

Yakima/Klickitat Fisheries Project; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2001-2002 Annual Report

Download Yakima/Klickitat Fisheries Project; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2001-2002 Annual Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 18 pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Yakima/Klickitat Fisheries Project; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2001-2002 Annual Report by : Todd N. Pearsons

Download or read book Yakima/Klickitat Fisheries Project; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2001-2002 Annual Report written by Todd N. Pearsons and published by . This book was released on 2003 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Yakima/Klickitat Fisheries Project (YKFP) is a supplementation project sponsored by the Northwest Power Planning Council (Columbia River Basin Fish and Wildlife Program 1994, Measure 7.4K). The objectives of the YKFP are: (1) to test the hypothesis that new supplementation techniques can be used in the Yakima River Basin to increase natural production and to improve harvest opportunities while maintaining the long-term genetic fitness of the wild and native salmonid populations and keeping adverse ecological interactions within acceptable limits (Yakima Fisheries Project Final Environment Impact Statement, 1996); (2) provide knowledge about the use of supplementation, so that it may be used to mitigate effects on anadromous fisheries throughout the Columbia River Basin; (3) to maintain and improve the quantity and productivity of salmon and steelhead habitat, including those areas made accessible by habitat improvements; (4) to ensure that Project implementation remains consistent with the Council's Fish and Wildlife Program; and (5) to implement the Project in a prudent and environmentally sound manner. Current YKFP operations have been designed to test the principles of supplementation (Busack et al. 1997). The Project's experimental design has focused on the following critical uncertainties affecting supplementation: (1) The survival and reproductive success of hatchery fish after release from the hatchery; (2) The impacts of hatchery fish as they interact with non-target species and stocks; and, (3) The effects of supplementation on the long-term genetic fitness of fish stocks. The YKFP endorses an adaptive management policy applied through a project management framework as described in the Yakima/Klickitat Fisheries Project Planning Status Report (1995), Fast and Craig (1997), Clune and Dauble 1991. The project is managed by a Policy Group consisting of a representative of the Yakama Nation (YN, lead agency) and a representative of the Washington Department of Fish and Wildlife (WDFW). The functions of the parties are described in an MOU between the YN and the WDFW. A Scientific and Technical Advisory Committee (STAC) consisting of one representative from each management entity reports to the Policy Group and provides technical input on policy and other issues. Additional committee's, such as the Monitoring Implementation and Planning Team (MIPT), serve as the discretion of STAC. The Policy Group and STAC meet periodically (usually monthly) to conduct the business of the YKFP. Although the YKFP is an all stocks initiative (BPA 1996), most effort to date has been directed at spring chinook salmon and coho salmon. This report is a compilation of the year's activities between August 1, 2001 and July 31, 2002. All findings should be considered preliminary until data collection is completed or the information is published in a peer-reviewed journal.

Effects of Domestication on Predation Mortality and Competitive Dominance; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report

Download Effects of Domestication on Predation Mortality and Competitive Dominance; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 47 pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Effects of Domestication on Predation Mortality and Competitive Dominance; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report by : Todd N. Pearsons

Download or read book Effects of Domestication on Predation Mortality and Competitive Dominance; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report written by Todd N. Pearsons and published by . This book was released on 2005 with total page 47 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the second of a series of progress reports that address the effects of hatchery domestication on predation mortality and competitive dominance in the upper Yakima River basin (Pearsons et al. 2004). This progress report summarizes data collected between January 1, 2004 and December 31, 2004. Raising fish in hatcheries can cause unintended behavioral, physiological, or morphological changes in chinook salmon due to domestication selection. Domestication selection is defined by Busack and Currens 1995 as, ''changes in quantity, variety, or combination of alleles within a captive population or between a captive population and its source population in the wild as a result of selection in an artificial environment''. Selection in artificial environments could be due to intentional or artificial selection, biased sampling during some stage of culture, or unintentional selection (Busack and Currens 1995). Genetic changes can result in lowered survival in the natural environment (Reisenbichler and Rubin 1999). The goal of supplementation or conservation hatcheries is to produce fish that will integrate into natural populations. Conservation hatcheries attempt to minimize intentional or biased sampling so that the hatchery fish are similar to naturally produced fish. However, the selective pressures in hatcheries are dramatically different than in the wild, which can result in genetic differences between hatchery and wild fish. The selective pressures may be particularly prominent during the freshwater rearing stage where most mortality of wild fish occurs. The Yakima Fisheries Project is studying the effects of domestication on a variety of adult and juvenile traits of spring chinook salmon (Busack et al. 2003). The overall experimental design is to compare a variety of traits, across generations, from three lines of Yakima basin chinook, a hatchery control, supplementation line, and a wild control. The hatchery line was derived from wild upper Yakima broodstock and is only allowed to spawn in the hatchery. The supplementation line is upper Yakima stock that spawns in the upper Yakima River. This stock is an integration of wild and hatchery supplementation fish. Starting in 2005, we plan to use a wild control line of fish that will be the offspring of wild broodstock collected in the Naches River system, a tributary to the Yakima River. The Naches River is not stocked with hatchery fish, and there is minimal stray from Upper Yakima supplementation, so we believe that these will serve as a control to compare any genotypic changes in the hatchery and the supplementation line. As generations of fish are tested, we believe we will be able to analyze the data using an analysis of covariance to test the hypothesis that the hatchery line will exhibit greater domestication over generations, the wild line will remain at baseline levels, and the supplementation line will be somewhere in between. In this report, we have used the terms ''hatchery'' or ''supplementation'' to refer to upper Yakima fish that are progeny of fish that spent one generation in the hatchery, and ''wild'' to refer to fish that have had no exposure to the hatchery other than the matings for this experiment. The terms are relative to the parents that produced the fish for these experiments. All progeny of these fish were mated and reared under the same laboratory conditions. This report addresses two juvenile traits: predation mortality, and competitive dominance. Other traits will be presented in other project reports. It is anticipated that it will take at least two to five generations to detect measurable responses in many domestication response variables (Busack et al. 2003). This report addresses domestication after one generation of hatchery rearing. This report is organized into two chapters that represent major topics associated with monitoring hatchery domestication. Chapter 1 reports the results of domestication on predation mortality of juvenile spring chinook salmon. Chapter 2 describes the affects of domestication on competitive dominance of juvenile spring chinook salmon. The chapters in this report are in various stages of development and should be considered preliminary unless they have been published in a peer-reviewed journal. Additional field work and/or analysis is in progress for topics covered in this report. Throughout this report, a premium was placed on presenting data in tables so that other interested parties could have access to the data.