High-Dimensional Data Analysis in Cancer Research

Download High-Dimensional Data Analysis in Cancer Research PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387697659
Total Pages : 164 pages
Book Rating : 4.3/5 (876 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Data Analysis in Cancer Research by : Xiaochun Li

Download or read book High-Dimensional Data Analysis in Cancer Research written by Xiaochun Li and published by Springer Science & Business Media. This book was released on 2008-12-19 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariate analysis is a mainstay of statistical tools in the analysis of biomedical data. It concerns with associating data matrices of n rows by p columns, with rows representing samples (or patients) and columns attributes of samples, to some response variables, e.g., patients outcome. Classically, the sample size n is much larger than p, the number of variables. The properties of statistical models have been mostly discussed under the assumption of fixed p and infinite n. The advance of biological sciences and technologies has revolutionized the process of investigations of cancer. The biomedical data collection has become more automatic and more extensive. We are in the era of p as a large fraction of n, and even much larger than n. Take proteomics as an example. Although proteomic techniques have been researched and developed for many decades to identify proteins or peptides uniquely associated with a given disease state, until recently this has been mostly a laborious process, carried out one protein at a time. The advent of high throughput proteome-wide technologies such as liquid chromatography-tandem mass spectroscopy make it possible to generate proteomic signatures that facilitate rapid development of new strategies for proteomics-based detection of disease. This poses new challenges and calls for scalable solutions to the analysis of such high dimensional data. In this volume, we will present the systematic and analytical approaches and strategies from both biostatistics and bioinformatics to the analysis of correlated and high-dimensional data.

The Oxford Handbook of Applied Bayesian Analysis

Download The Oxford Handbook of Applied Bayesian Analysis PDF Online Free

Author :
Publisher : OUP Oxford
ISBN 13 : 0191613894
Total Pages : 924 pages
Book Rating : 4.1/5 (916 download)

DOWNLOAD NOW!


Book Synopsis The Oxford Handbook of Applied Bayesian Analysis by : Anthony O' Hagan

Download or read book The Oxford Handbook of Applied Bayesian Analysis written by Anthony O' Hagan and published by OUP Oxford. This book was released on 2010-03-18 with total page 924 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian analysis has developed rapidly in applications in the last two decades and research in Bayesian methods remains dynamic and fast-growing. Dramatic advances in modelling concepts and computational technologies now enable routine application of Bayesian analysis using increasingly realistic stochastic models, and this drives the adoption of Bayesian approaches in many areas of science, technology, commerce, and industry. This Handbook explores contemporary Bayesian analysis across a variety of application areas. Chapters written by leading exponents of applied Bayesian analysis showcase the scientific ease and natural application of Bayesian modelling, and present solutions to real, engaging, societally important and demanding problems. The chapters are grouped into five general areas: Biomedical & Health Sciences; Industry, Economics & Finance; Environment & Ecology; Policy, Political & Social Sciences; and Natural & Engineering Sciences, and Appendix material in each touches on key concepts, models, and techniques of the chapter that are also of broader pedagogic and applied interest.

Bayesian Inference for Gene Expression and Proteomics

Download Bayesian Inference for Gene Expression and Proteomics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 052186092X
Total Pages : 437 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Inference for Gene Expression and Proteomics by : Kim-Anh Do

Download or read book Bayesian Inference for Gene Expression and Proteomics written by Kim-Anh Do and published by Cambridge University Press. This book was released on 2006-07-24 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expert overviews of Bayesian methodology, tools and software for multi-platform high-throughput experimentation.

Artificial Intelligence Applications in Information and Communication Technologies

Download Artificial Intelligence Applications in Information and Communication Technologies PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319198335
Total Pages : 216 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence Applications in Information and Communication Technologies by : Yacine Laalaoui

Download or read book Artificial Intelligence Applications in Information and Communication Technologies written by Yacine Laalaoui and published by Springer. This book was released on 2015-07-04 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents various recent applications of Artificial Intelligence in Information and Communication Technologies such as Search and Optimization methods, Machine Learning, Data Representation and Ontologies, and Multi-agent Systems. The main aim of this book is to help Information and Communication Technologies (ICT) practitioners in managing efficiently their platforms using AI tools and methods and to provide them with sufficient Artificial Intelligence background to deal with real-life problems.

Bayesian Nonparametrics

Download Bayesian Nonparametrics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139484605
Total Pages : 309 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Nonparametrics by : Nils Lid Hjort

Download or read book Bayesian Nonparametrics written by Nils Lid Hjort and published by Cambridge University Press. This book was released on 2010-04-12 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.

Bayesian Statistics and New Generations

Download Bayesian Statistics and New Generations PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030306119
Total Pages : 184 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Statistics and New Generations by : Raffaele Argiento

Download or read book Bayesian Statistics and New Generations written by Raffaele Argiento and published by Springer Nature. This book was released on 2019-11-21 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a selection of peer-reviewed contributions to the fourth Bayesian Young Statisticians Meeting, BAYSM 2018, held at the University of Warwick on 2-3 July 2018. The meeting provided a valuable opportunity for young researchers, MSc students, PhD students, and postdocs interested in Bayesian statistics to connect with the broader Bayesian community. The proceedings offer cutting-edge papers on a wide range of topics in Bayesian statistics, identify important challenges and investigate promising methodological approaches, while also assessing current methods and stimulating applications. The book is intended for a broad audience of statisticians, and demonstrates how theoretical, methodological, and computational aspects are often combined in the Bayesian framework to successfully tackle complex problems.

Handbook of Cluster Analysis

Download Handbook of Cluster Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466551895
Total Pages : 753 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Cluster Analysis by : Christian Hennig

Download or read book Handbook of Cluster Analysis written by Christian Hennig and published by CRC Press. This book was released on 2015-12-16 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Cluster Analysis provides a comprehensive and unified account of the main research developments in cluster analysis. Written by active, distinguished researchers in this area, the book helps readers make informed choices of the most suitable clustering approach for their problem and make better use of existing cluster analysis tools.The

Mixture Models and Applications

Download Mixture Models and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030238768
Total Pages : 356 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Mixture Models and Applications by : Nizar Bouguila

Download or read book Mixture Models and Applications written by Nizar Bouguila and published by Springer. This book was released on 2019-08-13 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on recent advances, approaches, theories and applications related to mixture models. In particular, it presents recent unsupervised and semi-supervised frameworks that consider mixture models as their main tool. The chapters considers mixture models involving several interesting and challenging problems such as parameters estimation, model selection, feature selection, etc. The goal of this book is to summarize the recent advances and modern approaches related to these problems. Each contributor presents novel research, a practical study, or novel applications based on mixture models, or a survey of the literature. Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection; Present theoretical and practical developments in mixture-based modeling and their importance in different applications; Discusses perspectives and challenging future works related to mixture modeling.

Bayesian inference with INLA

Download Bayesian inference with INLA PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351707205
Total Pages : 330 pages
Book Rating : 4.3/5 (517 download)

DOWNLOAD NOW!


Book Synopsis Bayesian inference with INLA by : Virgilio Gomez-Rubio

Download or read book Bayesian inference with INLA written by Virgilio Gomez-Rubio and published by CRC Press. This book was released on 2020-02-20 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: The integrated nested Laplace approximation (INLA) is a recent computational method that can fit Bayesian models in a fraction of the time required by typical Markov chain Monte Carlo (MCMC) methods. INLA focuses on marginal inference on the model parameters of latent Gaussian Markov random fields models and exploits conditional independence properties in the model for computational speed. Bayesian Inference with INLA provides a description of INLA and its associated R package for model fitting. This book describes the underlying methodology as well as how to fit a wide range of models with R. Topics covered include generalized linear mixed-effects models, multilevel models, spatial and spatio-temporal models, smoothing methods, survival analysis, imputation of missing values, and mixture models. Advanced features of the INLA package and how to extend the number of priors and latent models available in the package are discussed. All examples in the book are fully reproducible and datasets and R code are available from the book website. This book will be helpful to researchers from different areas with some background in Bayesian inference that want to apply the INLA method in their work. The examples cover topics on biostatistics, econometrics, education, environmental science, epidemiology, public health, and the social sciences.

Bayesian Modeling in Bioinformatics

Download Bayesian Modeling in Bioinformatics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420070185
Total Pages : 466 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Modeling in Bioinformatics by : Dipak K. Dey

Download or read book Bayesian Modeling in Bioinformatics written by Dipak K. Dey and published by CRC Press. This book was released on 2010-09-03 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Modeling in Bioinformatics discusses the development and application of Bayesian statistical methods for the analysis of high-throughput bioinformatics data arising from problems in molecular and structural biology and disease-related medical research, such as cancer. It presents a broad overview of statistical inference, clustering, and c

Advanced Statistical Methods for the Analysis of Large Data-Sets

Download Advanced Statistical Methods for the Analysis of Large Data-Sets PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642210376
Total Pages : 464 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Advanced Statistical Methods for the Analysis of Large Data-Sets by : Agostino Di Ciaccio

Download or read book Advanced Statistical Methods for the Analysis of Large Data-Sets written by Agostino Di Ciaccio and published by Springer Science & Business Media. This book was released on 2012-03-05 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theme of the meeting was “Statistical Methods for the Analysis of Large Data-Sets”. In recent years there has been increasing interest in this subject; in fact a huge quantity of information is often available but standard statistical techniques are usually not well suited to managing this kind of data. The conference serves as an important meeting point for European researchers working on this topic and a number of European statistical societies participated in the organization of the event. The book includes 45 papers from a selection of the 156 papers accepted for presentation and discussed at the conference on “Advanced Statistical Methods for the Analysis of Large Data-sets.”

Bayesian Nonparametric Data Analysis

Download Bayesian Nonparametric Data Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319189689
Total Pages : 203 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Nonparametric Data Analysis by : Peter Müller

Download or read book Bayesian Nonparametric Data Analysis written by Peter Müller and published by Springer. This book was released on 2015-06-17 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.

New Frontiers in Bayesian Statistics

Download New Frontiers in Bayesian Statistics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303116427X
Total Pages : 122 pages
Book Rating : 4.0/5 (311 download)

DOWNLOAD NOW!


Book Synopsis New Frontiers in Bayesian Statistics by : Raffaele Argiento

Download or read book New Frontiers in Bayesian Statistics written by Raffaele Argiento and published by Springer Nature. This book was released on 2022-11-26 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a selection of peer-reviewed contributions to the fifth Bayesian Young Statisticians Meeting, BaYSM 2021, held virtually due to the COVID-19 pandemic on 1-3 September 2021. Despite all the challenges of an online conference, the meeting provided a valuable opportunity for early career researchers, including MSc students, PhD students, and postdocs to connect with the broader Bayesian community. The proceedings highlight many different topics in Bayesian statistics, presenting promising methodological approaches to address important challenges in a variety of applications. The book is intended for a broad audience of people interested in statistics, and provides a series of stimulating contributions on theoretical, methodological, and computational aspects of Bayesian statistics.

Robust Bayesian Analysis

Download Robust Bayesian Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461213061
Total Pages : 431 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Robust Bayesian Analysis by : David Rios Insua

Download or read book Robust Bayesian Analysis written by David Rios Insua and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust Bayesian analysis aims at overcoming the traditional objection to Bayesian analysis of its dependence on subjective inputs, mainly the prior and the loss. Its purpose is the determination of the impact of the inputs to a Bayesian analysis (the prior, the loss and the model) on its output when the inputs range in certain classes. If the impact is considerable, there is sensitivity and we should attempt to further refine the information the incumbent classes available, perhaps through additional constraints on and/ or obtaining additional data; if the impact is not important, robustness holds and no further analysis and refinement would be required. Robust Bayesian analysis has been widely accepted by Bayesian statisticians; for a while it was even a main research topic in the field. However, to a great extent, their impact is yet to be seen in applied settings. This volume, therefore, presents an overview of the current state of robust Bayesian methods and their applications and identifies topics of further in terest in the area. The papers in the volume are divided into nine parts covering the main aspects of the field. The first one provides an overview of Bayesian robustness at a non-technical level. The paper in Part II con cerns foundational aspects and describes decision-theoretical axiomatisa tions leading to the robust Bayesian paradigm, motivating reasons for which robust analysis is practically unavoidable within Bayesian analysis.

Algorithms and Programs of Dynamic Mixture Estimation

Download Algorithms and Programs of Dynamic Mixture Estimation PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319646710
Total Pages : 118 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Algorithms and Programs of Dynamic Mixture Estimation by : Ivan Nagy

Download or read book Algorithms and Programs of Dynamic Mixture Estimation written by Ivan Nagy and published by Springer. This book was released on 2017-08-14 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a general theoretical background for constructing the recursive Bayesian estimation algorithms for mixture models. It collects the recursive algorithms for estimating dynamic mixtures of various distributions and brings them in the unified form, providing a scheme for constructing the estimation algorithm for a mixture of components modeled by distributions with reproducible statistics. It offers the recursive estimation of dynamic mixtures, which are free of iterative processes and close to analytical solutions as much as possible. In addition, these methods can be used online and simultaneously perform learning, which improves their efficiency during estimation. The book includes detailed program codes for solving the presented theoretical tasks. Codes are implemented in the open source platform for engineering computations. The program codes given serve to illustrate the theory and demonstrate the work of the included algorithms.

Artificial Neural Networks and Machine Learning – ICANN 2017

Download Artificial Neural Networks and Machine Learning – ICANN 2017 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319686127
Total Pages : 815 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Artificial Neural Networks and Machine Learning – ICANN 2017 by : Alessandra Lintas

Download or read book Artificial Neural Networks and Machine Learning – ICANN 2017 written by Alessandra Lintas and published by Springer. This book was released on 2017-10-24 with total page 815 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two volume set, LNCS 10613 and 10614, constitutes the proceedings of then 26th International Conference on Artificial Neural Networks, ICANN 2017, held in Alghero, Italy, in September 2017. The 128 full papers included in this volume were carefully reviewed and selected from 270 submissions. They were organized in topical sections named: From Perception to Action; From Neurons to Networks; Brain Imaging; Recurrent Neural Networks; Neuromorphic Hardware; Brain Topology and Dynamics; Neural Networks Meet Natural and Environmental Sciences; Convolutional Neural Networks; Games and Strategy; Representation and Classification; Clustering; Learning from Data Streams and Time Series; Image Processing and Medical Applications; Advances in Machine Learning. There are 63 short paper abstracts that are included in the back matter of the volume.

Nonparametric Bayesian Inference in Biostatistics

Download Nonparametric Bayesian Inference in Biostatistics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319195182
Total Pages : 448 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Bayesian Inference in Biostatistics by : Riten Mitra

Download or read book Nonparametric Bayesian Inference in Biostatistics written by Riten Mitra and published by Springer. This book was released on 2015-07-25 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.