Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Special Functions Kz Type Equations And Representation Theory
Download Special Functions Kz Type Equations And Representation Theory full books in PDF, epub, and Kindle. Read online Special Functions Kz Type Equations And Representation Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Special Functions, KZ Type Equations, and Representation Theory by : Aleksandr Nikolaevich Varchenko
Download or read book Special Functions, KZ Type Equations, and Representation Theory written by Aleksandr Nikolaevich Varchenko and published by American Mathematical Soc.. This book was released on 2003 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last twenty years have seen an active interaction between mathematics and physics. This book is devoted to one of the new areas which deals with mathematical structures related to conformal field theory and its sqs-deformations. In the book, the author discusses the interplay between Knizhnik-Zamolodchikov type equations, the Bethe ansatz method, representation theory, and geometry of multi-dimensional hypergeometric functions. This book aims to provide an introduction to the area and expose different facets of the subject. It contains constructions, discussions of notions, statements of main results, and illustrative examples. The exposition is restricted to the simplest case of the theory associated with the Lie algebra s\mathfrak{sl 2s. This book is intended for researchers and graduate students in mathematics and in mathematical physics, in particular to those interested in applications of special functions.
Book Synopsis Special Functions and Orthogonal Polynomials by : Richard Beals
Download or read book Special Functions and Orthogonal Polynomials written by Richard Beals and published by Cambridge University Press. This book was released on 2016-05-17 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of special functions is often presented as a collection of disparate results, rarely organized in a coherent way. This book emphasizes general principles that unify and demarcate the subjects of study. The authors' main goals are to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more. It shows how much of the subject can be traced back to two equations - the hypergeometric equation and confluent hypergeometric equation - and it details the ways in which these equations are canonical and special. There is extended coverage of orthogonal polynomials, including connections to approximation theory, continued fractions, and the moment problem, as well as an introduction to new asymptotic methods. There are also chapters on Meijer G-functions and elliptic functions. The final chapter introduces Painlevé transcendents, which have been termed the 'special functions of the twenty-first century'.
Book Synopsis Encyclopedia of Special Functions: The Askey-Bateman Project: Volume 2, Multivariable Special Functions by : Tom H. Koornwinder
Download or read book Encyclopedia of Special Functions: The Askey-Bateman Project: Volume 2, Multivariable Special Functions written by Tom H. Koornwinder and published by Cambridge University Press. This book was released on 2020-10-15 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second of three volumes that form the Encyclopedia of Special Functions, an extensive update of the Bateman Manuscript Project. Volume 2 covers multivariable special functions. When the Bateman project appeared, study of these was in an early stage, but revolutionary developments began to be made in the 1980s and have continued ever since. World-renowned experts survey these over the course of 12 chapters, each containing an extensive bibliography. The reader encounters different perspectives on a wide range of topics, from Dunkl theory, to Macdonald theory, to the various deep generalizations of classical hypergeometric functions to the several variables case, including the elliptic level. Particular attention is paid to the close relation of the subject with Lie theory, geometry, mathematical physics and combinatorics.
Book Synopsis Bridging Algebra, Geometry, and Topology by : Denis Ibadula
Download or read book Bridging Algebra, Geometry, and Topology written by Denis Ibadula and published by Springer. This book was released on 2014-10-20 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebra, geometry and topology cover a variety of different, but intimately related research fields in modern mathematics. This book focuses on specific aspects of this interaction. The present volume contains refereed papers which were presented at the International Conference “Experimental and Theoretical Methods in Algebra, Geometry and Topology”, held in Eforie Nord (near Constanta), Romania, during 20-25 June 2013. The conference was devoted to the 60th anniversary of the distinguished Romanian mathematicians Alexandru Dimca and Ştefan Papadima. The selected papers consist of original research work and a survey paper. They are intended for a large audience, including researchers and graduate students interested in algebraic geometry, combinatorics, topology, hyperplane arrangements and commutative algebra. The papers are written by well-known experts from different fields of mathematics, affiliated to universities from all over the word, they cover a broad range of topics and explore the research frontiers of a wide variety of contemporary problems of modern mathematics.
Book Synopsis Zeta and $L$-functions in Number Theory and Combinatorics by : Wen-Ching Winnie Li
Download or read book Zeta and $L$-functions in Number Theory and Combinatorics written by Wen-Ching Winnie Li and published by American Mathematical Soc.. This book was released on 2019-03-01 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zeta and L-functions play a central role in number theory. They provide important information of arithmetic nature. This book, which grew out of the author's teaching over several years, explores the interaction between number theory and combinatorics using zeta and L-functions as a central theme. It provides a systematic and comprehensive account of these functions in a combinatorial setting and establishes, among other things, the combinatorial counterparts of celebrated results in number theory, such as the prime number theorem and the Chebotarev density theorem. The spectral theory for finite graphs and higher dimensional complexes is studied. Of special interest in theory and applications are the spectrally extremal objects, called Ramanujan graphs and Ramanujan complexes, which can be characterized by their associated zeta functions satisfying the Riemann Hypothesis. Explicit constructions of these extremal combinatorial objects, using number-theoretic and combinatorial means, are presented. Research on zeta and L-functions for complexes other than graphs emerged only in recent years. This is the first book for graduate students and researchers offering deep insight into this fascinating and fast developing area.
Book Synopsis Hypergeometry, Integrability and Lie Theory by : Erik Koelink
Download or read book Hypergeometry, Integrability and Lie Theory written by Erik Koelink and published by American Mathematical Soc.. This book was released on 2022-08-30 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the virtual conference on Hypergeometry, Integrability and Lie Theory, held from December 7–11, 2020, which was dedicated to the 50th birthday of Jasper Stokman. The papers represent recent developments in the areas of representation theory, quantum integrable systems and special functions of hypergeometric type.
Book Synopsis Fitting Smooth Functions to Data by : Charles Fefferman
Download or read book Fitting Smooth Functions to Data written by Charles Fefferman and published by American Mathematical Soc.. This book was released on 2020-10-27 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introductory text that charts the recent developments in the area of Whitney-type extension problems and the mathematical aspects of interpolation of data. It provides a detailed tour of a new and active area of mathematical research. In each section, the authors focus on a different key insight in the theory. The book motivates the more technical aspects of the theory through a set of illustrative examples. The results include the solution of Whitney's problem, an efficient algorithm for a finite version, and analogues for Hölder and Sobolev spaces in place of Cm. The target audience consists of graduate students and junior faculty in mathematics and computer science who are familiar with point set topology, as well as measure and integration theory. The book is based on lectures presented at the CBMS regional workshop held at the University of Texas at Austin in the summer of 2019.
Book Synopsis Lectures on Field Theory and Topology by : Daniel S. Freed
Download or read book Lectures on Field Theory and Topology written by Daniel S. Freed and published by American Mathematical Soc.. This book was released on 2019-08-23 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.
Book Synopsis Analysis of Stochastic Partial Differential Equations by : Davar Khoshnevisan
Download or read book Analysis of Stochastic Partial Differential Equations written by Davar Khoshnevisan and published by American Mathematical Soc.. This book was released on 2014-06-11 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general area of stochastic PDEs is interesting to mathematicians because it contains an enormous number of challenging open problems. There is also a great deal of interest in this topic because it has deep applications in disciplines that range from applied mathematics, statistical mechanics, and theoretical physics, to theoretical neuroscience, theory of complex chemical reactions [including polymer science], fluid dynamics, and mathematical finance. The stochastic PDEs that are studied in this book are similar to the familiar PDE for heat in a thin rod, but with the additional restriction that the external forcing density is a two-parameter stochastic process, or what is more commonly the case, the forcing is a "random noise," also known as a "generalized random field." At several points in the lectures, there are examples that highlight the phenomenon that stochastic PDEs are not a subset of PDEs. In fact, the introduction of noise in some partial differential equations can bring about not a small perturbation, but truly fundamental changes to the system that the underlying PDE is attempting to describe. The topics covered include a brief introduction to the stochastic heat equation, structure theory for the linear stochastic heat equation, and an in-depth look at intermittency properties of the solution to semilinear stochastic heat equations. Specific topics include stochastic integrals à la Norbert Wiener, an infinite-dimensional Itô-type stochastic integral, an example of a parabolic Anderson model, and intermittency fronts. There are many possible approaches to stochastic PDEs. The selection of topics and techniques presented here are informed by the guiding example of the stochastic heat equation. A co-publication of the AMS and CBMS.
Book Synopsis Nonlinear Dispersive Equations by : Terence Tao
Download or read book Nonlinear Dispersive Equations written by Terence Tao and published by American Mathematical Soc.. This book was released on 2006 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Starting only with a basic knowledge of graduate real analysis and Fourier analysis, the text first presents basic nonlinear tools such as the bootstrap method and perturbation theory in the simpler context of nonlinear ODE, then introduces the harmonic analysis and geometric tools used to control linear dispersive PDE. These methods are then combined to study four model nonlinear dispersive equations. Through extensive exercises, diagrams, and informal discussion, the book gives a rigorous theoretical treatment of the material, the real-world intuition and heuristics that underlie the subject, as well as mentioning connections with other areas of PDE, harmonic analysis, and dynamical systems.".
Book Synopsis Asymptotics of Random Matrices and Related Models: The Uses of Dyson-Schwinger Equations by : Alice Guionnet
Download or read book Asymptotics of Random Matrices and Related Models: The Uses of Dyson-Schwinger Equations written by Alice Guionnet and published by American Mathematical Soc.. This book was released on 2019-04-29 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability theory is based on the notion of independence. The celebrated law of large numbers and the central limit theorem describe the asymptotics of the sum of independent variables. However, there are many models of strongly correlated random variables: for instance, the eigenvalues of random matrices or the tiles in random tilings. Classical tools of probability theory are useless to study such models. These lecture notes describe a general strategy to study the fluctuations of strongly interacting random variables. This strategy is based on the asymptotic analysis of Dyson-Schwinger (or loop) equations: the author will show how these equations are derived, how to obtain the concentration of measure estimates required to study these equations asymptotically, and how to deduce from this analysis the global fluctuations of the model. The author will apply this strategy in different settings: eigenvalues of random matrices, matrix models with one or several cuts, random tilings, and several matrices models.
Book Synopsis Tensors: Asymptotic Geometry and Developments 2016–2018 by : J.M. Landsberg
Download or read book Tensors: Asymptotic Geometry and Developments 2016–2018 written by J.M. Landsberg and published by American Mathematical Soc.. This book was released on 2019-07-05 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensors are used throughout the sciences, especially in solid state physics and quantum information theory. This book brings a geometric perspective to the use of tensors in these areas. It begins with an introduction to the geometry of tensors and provides geometric expositions of the basics of quantum information theory, Strassen's laser method for matrix multiplication, and moment maps in algebraic geometry. It also details several exciting recent developments regarding tensors in general. In particular, it discusses and explains the following material previously only available in the original research papers: (1) Shitov's 2017 refutation of longstanding conjectures of Strassen on rank additivity and Common on symmetric rank; (2) The 2017 Christandl-Vrana-Zuiddam quantum spectral points that bring together quantum information theory, the asymptotic geometry of tensors, matrix multiplication complexity, and moment polytopes in geometric invariant theory; (3) the use of representation theory in quantum information theory, including the solution of the quantum marginal problem; (4) the use of tensor network states in solid state physics, and (5) recent geometric paths towards upper bounds for the complexity of matrix multiplication. Numerous open problems appropriate for graduate students and post-docs are included throughout.
Book Synopsis Introduction to the Theory of Valuations by : Semyon Alesker
Download or read book Introduction to the Theory of Valuations written by Semyon Alesker and published by American Mathematical Soc.. This book was released on 2018-06-27 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of valuations on convex sets is a classical part of convex geometry which goes back at least to the positive solution of the third Hilbert problem by M. Dehn in 1900. Since then the theory has undergone a multifaceted development. The author discusses some of Hadwiger's results on valuations on convex compact sets that are continuous in the Hausdorff metric. The book also discusses the Klain-Schneider theorem as well as the proof of McMullen's conjecture, which led subsequently to many further applications and advances in the theory. The last section gives an overview of more recent developments in the theory of translation-invariant continuous valuations, some of which turn out to be useful in integral geometry. This book grew out of lectures that were given in August 2015 at Kent State University in the framework of the NSF CBMS conference “Introduction to the Theory of Valuations on Convex Sets”. Only a basic background in general convexity is assumed.
Book Synopsis Rudiments of Ramsey Theory by : Ron Graham
Download or read book Rudiments of Ramsey Theory written by Ron Graham and published by American Mathematical Soc.. This book was released on 2015-10-01 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: In every sufficiently large structure which has been partitioned there will always be some well-behaved structure in one of the parts. This takes many forms. For example, colorings of the integers by finitely many colors must have long monochromatic arithmetic progressions (van der Waerden's theorem); and colorings of the edges of large graphs must have monochromatic subgraphs of a specified type (Ramsey's theorem). This book explores many of the basic results and variations of this theory. Since the first edition of this book there have been many advances in this field. In the second edition the authors update the exposition to reflect the current state of the art. They also include many pointers to modern results. A co-publication of the AMS and CBMS.
Book Synopsis Applications of Polynomial Systems by : David A. Cox
Download or read book Applications of Polynomial Systems written by David A. Cox and published by American Mathematical Soc.. This book was released on 2020-03-02 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systems of polynomial equations can be used to model an astonishing variety of phenomena. This book explores the geometry and algebra of such systems and includes numerous applications. The book begins with elimination theory from Newton to the twenty-first century and then discusses the interaction between algebraic geometry and numerical computations, a subject now called numerical algebraic geometry. The final three chapters discuss applications to geometric modeling, rigidity theory, and chemical reaction networks in detail. Each chapter ends with a section written by a leading expert. Examples in the book include oil wells, HIV infection, phylogenetic models, four-bar mechanisms, border rank, font design, Stewart-Gough platforms, rigidity of edge graphs, Gaussian graphical models, geometric constraint systems, and enzymatic cascades. The reader will encounter geometric objects such as Bézier patches, Cayley-Menger varieties, and toric varieties; and algebraic objects such as resultants, Rees algebras, approximation complexes, matroids, and toric ideals. Two important subthemes that appear in multiple chapters are toric varieties and algebraic statistics. The book also discusses the history of elimination theory, including its near elimination in the middle of the twentieth century. The main goal is to inspire the reader to learn about the topics covered in the book. With this in mind, the book has an extensive bibliography containing over 350 books and papers.
Book Synopsis Mathematical Biology by : Avner Friedman
Download or read book Mathematical Biology written by Avner Friedman and published by American Mathematical Soc.. This book was released on 2018-06-14 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fast growing field of mathematical biology addresses biological questions using mathematical models from areas such as dynamical systems, probability, statistics, and discrete mathematics. This book considers models that are described by systems of partial differential equations, and it focuses on modeling, rather than on numerical methods and simulations. The models studied are concerned with population dynamics, cancer, risk of plaque growth associated with high cholesterol, and wound healing. A rich variety of open problems demonstrates the exciting challenges and opportunities for research at the interface of mathematics and biology. This book primarily addresses students and researchers in mathematics who do not necessarily have any background in biology and who may have had little exposure to PDEs.
Book Synopsis Arithmetic and Geometry Around Hypergeometric Functions by : Rolf-Peter Holzapfel
Download or read book Arithmetic and Geometry Around Hypergeometric Functions written by Rolf-Peter Holzapfel and published by Springer Science & Business Media. This book was released on 2007-06-28 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises lecture notes, survey and research articles originating from the CIMPA Summer School Arithmetic and Geometry around Hypergeometric Functions held at Galatasaray University, Istanbul, June 13-25, 2005. It covers a wide range of topics related to hypergeometric functions, thus giving a broad perspective of the state of the art in the field.