Sparse Estimation with Math and Python

Download Sparse Estimation with Math and Python PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811614385
Total Pages : 254 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Sparse Estimation with Math and Python by : Joe Suzuki

Download or read book Sparse Estimation with Math and Python written by Joe Suzuki and published by Springer Nature. This book was released on 2021-10-30 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of sparse estimation by considering math problems and building Python programs. Each chapter introduces the notion of sparsity and provides procedures followed by mathematical derivations and source programs with examples of execution. To maximize readers’ insights into sparsity, mathematical proofs are presented for almost all propositions, and programs are described without depending on any packages. The book is carefully organized to provide the solutions to the exercises in each chapter so that readers can solve the total of 100 exercises by simply following the contents of each chapter. This textbook is suitable for an undergraduate or graduate course consisting of about 15 lectures (90 mins each). Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning by data scientists, machine learning engineers, and researchers interested in linear regression, generalized linear lasso, group lasso, fused lasso, graphical models, matrix decomposition, and multivariate analysis. This book is one of a series of textbooks in machine learning by the same Author. Other titles are: Statistical Learning with Math and R (https://www.springer.com/gp/book/9789811575679) Statistical Learning with Math and Pyth (https://www.springer.com/gp/book/9789811578762) Sparse Estimation with Math and R

Sparse Estimation with Math and R

Download Sparse Estimation with Math and R PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811614466
Total Pages : 234 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Sparse Estimation with Math and R by : Joe Suzuki

Download or read book Sparse Estimation with Math and R written by Joe Suzuki and published by Springer Nature. This book was released on 2021-08-04 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of sparse estimation by considering math problems and building R programs. Each chapter introduces the notion of sparsity and provides procedures followed by mathematical derivations and source programs with examples of execution. To maximize readers’ insights into sparsity, mathematical proofs are presented for almost all propositions, and programs are described without depending on any packages. The book is carefully organized to provide the solutions to the exercises in each chapter so that readers can solve the total of 100 exercises by simply following the contents of each chapter. This textbook is suitable for an undergraduate or graduate course consisting of about 15 lectures (90 mins each). Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning by data scientists, machine learning engineers, and researchers interested in linear regression, generalized linear lasso, group lasso, fused lasso, graphical models, matrix decomposition, and multivariate analysis. This book is one of a series of textbooks in machine learning by the same author. Other titles are: - Statistical Learning with Math and R (https://www.springer.com/gp/book/9789811575679) - Statistical Learning with Math and Python (https://www.springer.com/gp/book/9789811578762) - Sparse Estimation with Math and Python

Kernel Methods for Machine Learning with Math and Python

Download Kernel Methods for Machine Learning with Math and Python PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811904014
Total Pages : 216 pages
Book Rating : 4.8/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Kernel Methods for Machine Learning with Math and Python by : Joe Suzuki

Download or read book Kernel Methods for Machine Learning with Math and Python written by Joe Suzuki and published by Springer Nature. This book was released on 2022-05-14 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than relying on knowledge or experience. This textbook addresses the fundamentals of kernel methods for machine learning by considering relevant math problems and building Python programs. The book’s main features are as follows: The content is written in an easy-to-follow and self-contained style. The book includes 100 exercises, which have been carefully selected and refined. As their solutions are provided in the main text, readers can solve all of the exercises by reading the book. The mathematical premises of kernels are proven and the correct conclusions are provided, helping readers to understand the nature of kernels. Source programs and running examples are presented to help readers acquire a deeper understanding of the mathematics used. Once readers have a basic understanding of the functional analysis topics covered in Chapter 2, the applications are discussed in the subsequent chapters. Here, no prior knowledge of mathematics is assumed. This book considers both the kernel for reproducing kernel Hilbert space (RKHS) and the kernel for the Gaussian process; a clear distinction is made between the two.

WAIC and WBIC with Python Stan

Download WAIC and WBIC with Python Stan PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819938414
Total Pages : 249 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis WAIC and WBIC with Python Stan by : Joe Suzuki

Download or read book WAIC and WBIC with Python Stan written by Joe Suzuki and published by Springer Nature. This book was released on 2024-01-09 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the art of machine learning and data science by diving into the essence of mathematical logic with this comprehensive textbook. This book focuses on the widely applicable information criterion (WAIC), also described as the Watanabe-Akaike information criterion, and the widely applicable Bayesian information criterion (WBIC), also described as the Watanabe Bayesian information criterion. The book expertly guides you through relevant mathematical problems while also providing hands-on experience with programming in Python and Stan. Whether you’re a data scientist looking to refine your model selection process or a researcher who wants to explore the latest developments in Bayesian statistics, this accessible guide will give you a firm grasp of Watanabe Bayesian Theory. The key features of this indispensable book include: A clear and self-contained writing style, ensuring ease of understanding for readers at various levels of expertise. 100 carefully selected exercises accompanied by solutions in the main text, enabling readers to effectively gauge their progress and comprehension. A comprehensive guide to Sumio Watanabe’s groundbreaking Bayes theory, demystifying a subject once considered too challenging even for seasoned statisticians. Detailed source programs and Stan codes that will enhance readers’ grasp of the mathematical concepts presented. A streamlined approach to algebraic geometry topics in Chapter 6, making Bayes theory more accessible and less daunting. Embark on your machine learning and data science journey with this essential textbook and unlock the full potential of WAIC and WBIC today!

Iterative Methods for Sparse Linear Systems

Download Iterative Methods for Sparse Linear Systems PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898715342
Total Pages : 537 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Iterative Methods for Sparse Linear Systems by : Yousef Saad

Download or read book Iterative Methods for Sparse Linear Systems written by Yousef Saad and published by SIAM. This book was released on 2003-04-01 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- General.

WAIC and WBIC with R Stan

Download WAIC and WBIC with R Stan PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819938384
Total Pages : 241 pages
Book Rating : 4.8/5 (199 download)

DOWNLOAD NOW!


Book Synopsis WAIC and WBIC with R Stan by : Joe Suzuki

Download or read book WAIC and WBIC with R Stan written by Joe Suzuki and published by Springer Nature. This book was released on 2023-11-25 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the art of machine learning and data science by diving into the essence of mathematical logic with this comprehensive textbook. This book focuses on the widely applicable information criterion (WAIC), also described as the Watanabe-Akaike information criterion, and the widely applicable Bayesian information criterion (WBIC), also described as the Watanabe Bayesian information criterion. This book expertly guides you through relevant mathematical problems while also providing hands-on experience with programming in R and Stan. Whether you’re a data scientist looking to refine your model selection process or a researcher who wants to explore the latest developments in Bayesian statistics, this accessible guide will give you a firm grasp of Watanabe Bayesian Theory. The key features of this indispensable book include: A clear and self-contained writing style, ensuring ease of understanding for readers at various levels of expertise. 100 carefully selected exercises accompanied by solutions in the main text, enabling readers to effectively gauge their progress and comprehension. A comprehensive guide to Sumio Watanabe’s groundbreaking Bayes theory, demystifying a subject once considered too challenging even for seasoned statisticians. Detailed source programs and Stan codes that will enhance readers’ grasp of the mathematical concepts presented. A streamlined approach to algebraic geometry topics in Chapter 6, making Bayes theory more accessible and less daunting. Embark on your machine learning and data science journey with this essential textbook and unlock the full potential of WAIC and WBIC today!

Statistical Learning with Math and Python

Download Statistical Learning with Math and Python PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 981157877X
Total Pages : 261 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Statistical Learning with Math and Python by : Joe Suzuki

Download or read book Statistical Learning with Math and Python written by Joe Suzuki and published by Springer Nature. This book was released on 2021-08-03 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most crucial ability for machine learning and data science is mathematical logic for grasping their essence rather than knowledge and experience. This textbook approaches the essence of machine learning and data science by considering math problems and building Python programs. As the preliminary part, Chapter 1 provides a concise introduction to linear algebra, which will help novices read further to the following main chapters. Those succeeding chapters present essential topics in statistical learning: linear regression, classification, resampling, information criteria, regularization, nonlinear regression, decision trees, support vector machines, and unsupervised learning. Each chapter mathematically formulates and solves machine learning problems and builds the programs. The body of a chapter is accompanied by proofs and programs in an appendix, with exercises at the end of the chapter. Because the book is carefully organized to provide the solutions to the exercises in each chapter, readers can solve the total of 100 exercises by simply following the contents of each chapter. This textbook is suitable for an undergraduate or graduate course consisting of about 12 lectures. Written in an easy-to-follow and self-contained style, this book will also be perfect material for independent learning.

Introduction to Applied Linear Algebra

Download Introduction to Applied Linear Algebra PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316518965
Total Pages : 477 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Applied Linear Algebra by : Stephen Boyd

Download or read book Introduction to Applied Linear Algebra written by Stephen Boyd and published by Cambridge University Press. This book was released on 2018-06-07 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.

Neural Information Processing

Download Neural Information Processing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319700871
Total Pages : 951 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Neural Information Processing by : Derong Liu

Download or read book Neural Information Processing written by Derong Liu and published by Springer. This book was released on 2017-11-07 with total page 951 pages. Available in PDF, EPUB and Kindle. Book excerpt: The six volume set LNCS 10634, LNCS 10635, LNCS 10636, LNCS 10637, LNCS 10638, and LNCS 10639 constitues the proceedings of the 24rd International Conference on Neural Information Processing, ICONIP 2017, held in Guangzhou, China, in November 2017. The 563 full papers presented were carefully reviewed and selected from 856 submissions. The 6 volumes are organized in topical sections on Machine Learning, Reinforcement Learning, Big Data Analysis, Deep Learning, Brain-Computer Interface, Computational Finance, Computer Vision, Neurodynamics, Sensory Perception and Decision Making, Computational Intelligence, Neural Data Analysis, Biomedical Engineering, Emotion and Bayesian Networks, Data Mining, Time-Series Analysis, Social Networks, Bioinformatics, Information Security and Social Cognition, Robotics and Control, Pattern Recognition, Neuromorphic Hardware and Speech Processing.

Explorations In Numerical Analysis: Python Edition

Download Explorations In Numerical Analysis: Python Edition PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811227950
Total Pages : 691 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Explorations In Numerical Analysis: Python Edition by : James V Lambers

Download or read book Explorations In Numerical Analysis: Python Edition written by James V Lambers and published by World Scientific. This book was released on 2021-01-14 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is intended to introduce advanced undergraduate and early-career graduate students to the field of numerical analysis. This field pertains to the design, analysis, and implementation of algorithms for the approximate solution of mathematical problems that arise in applications spanning science and engineering, and are not practical to solve using analytical techniques such as those taught in courses in calculus, linear algebra or differential equations.Topics covered include computer arithmetic, error analysis, solution of systems of linear equations, least squares problems, eigenvalue problems, nonlinear equations, optimization, polynomial interpolation and approximation, numerical differentiation and integration, ordinary differential equations, and partial differential equations. For each problem considered, the presentation includes the derivation of solution techniques, analysis of their efficiency, accuracy and robustness, and details of their implementation, illustrated through the Python programming language.This text is suitable for a year-long sequence in numerical analysis, and can also be used for a one-semester course in numerical linear algebra.

Sparse Modeling for Image and Vision Processing

Download Sparse Modeling for Image and Vision Processing PDF Online Free

Author :
Publisher : Now Publishers
ISBN 13 : 9781680830088
Total Pages : 216 pages
Book Rating : 4.8/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Sparse Modeling for Image and Vision Processing by : Julien Mairal

Download or read book Sparse Modeling for Image and Vision Processing written by Julien Mairal and published by Now Publishers. This book was released on 2014-12-19 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse Modeling for Image and Vision Processing offers a self-contained view of sparse modeling for visual recognition and image processing. More specifically, it focuses on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.

Basics of Linear Algebra for Machine Learning

Download Basics of Linear Algebra for Machine Learning PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 211 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Basics of Linear Algebra for Machine Learning by : Jason Brownlee

Download or read book Basics of Linear Algebra for Machine Learning written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2018-01-24 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear algebra is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. In this laser-focused Ebook, you will finally cut through the equations, Greek letters, and confusion, and discover the topics in linear algebra that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover what linear algebra is, the importance of linear algebra to machine learning, vector, and matrix operations, matrix factorization, principal component analysis, and much more.

PETSc for Partial Differential Equations: Numerical Solutions in C and Python

Download PETSc for Partial Differential Equations: Numerical Solutions in C and Python PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611976316
Total Pages : 407 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis PETSc for Partial Differential Equations: Numerical Solutions in C and Python by : Ed Bueler

Download or read book PETSc for Partial Differential Equations: Numerical Solutions in C and Python written by Ed Bueler and published by SIAM. This book was released on 2020-10-22 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of advanced data structures and methods for solving linear and nonlinear equations and for managing discretizations. This book uses these modern numerical tools to demonstrate how to solve nonlinear partial differential equations (PDEs) in parallel. It starts from key mathematical concepts, such as Krylov space methods, preconditioning, multigrid, and Newton’s method. In PETSc these components are composed at run time into fast solvers. Discretizations are introduced from the beginning, with an emphasis on finite difference and finite element methodologies. The example C programs of the first 12 chapters, listed on the inside front cover, solve (mostly) elliptic and parabolic PDE problems. Discretization leads to large, sparse, and generally nonlinear systems of algebraic equations. For such problems, mathematical solver concepts are explained and illustrated through the examples, with sufficient context to speed further development. PETSc for Partial Differential Equations addresses both discretizations and fast solvers for PDEs, emphasizing practice more than theory. Well-structured examples lead to run-time choices that result in high solver performance and parallel scalability. The last two chapters build on the reader’s understanding of fast solver concepts when applying the Firedrake Python finite element solver library. This textbook, the first to cover PETSc programming for nonlinear PDEs, provides an on-ramp for graduate students and researchers to a major area of high-performance computing for science and engineering. It is suitable as a supplement for courses in scientific computing or numerical methods for differential equations.

High-Dimensional Probability

Download High-Dimensional Probability PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108415199
Total Pages : 299 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Probability by : Roman Vershynin

Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Interpretable Machine Learning

Download Interpretable Machine Learning PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 0244768528
Total Pages : 320 pages
Book Rating : 4.2/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Interpretable Machine Learning by : Christoph Molnar

Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications

Download Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498764177
Total Pages : 375 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications by : Daniele Bertaccini

Download or read book Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications written by Daniele Bertaccini and published by CRC Press. This book was released on 2018-02-19 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.

Direct Methods for Sparse Linear Systems

Download Direct Methods for Sparse Linear Systems PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 0898716136
Total Pages : 228 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Direct Methods for Sparse Linear Systems by : Timothy A. Davis

Download or read book Direct Methods for Sparse Linear Systems written by Timothy A. Davis and published by SIAM. This book was released on 2006-09-01 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: The sparse backslash book. Everything you wanted to know but never dared to ask about modern direct linear solvers. Chen Greif, Assistant Professor, Department of Computer Science, University of British Columbia.Overall, the book is magnificent. It fills a long-felt need for an accessible textbook on modern sparse direct methods. Its choice of scope is excellent John Gilbert, Professor, Department of Computer Science, University of California, Santa Barbara.Computational scientists often encounter problems requiring the solution of sparse systems of linear equations. Attacking these problems efficiently requires an in-depth knowledge of the underlying theory, algorithms, and data structures found in sparse matrix software libraries. Here, Davis presents the fundamentals of sparse matrix algorithms to provide the requisite background. The book includes CSparse, a concise downloadable sparse matrix package that illustrates the algorithms and theorems presented in the book and equips readers with the tools necessary to understand larger and more complex software packages.With a strong emphasis on MATLAB and the C programming language, Direct Methods for Sparse Linear Systems equips readers with the working knowledge required to use sparse solver packages and write code to interface applications to those packages. The book also explains how MATLAB performs its sparse matrix computations.Audience This invaluable book is essential to computational scientists and software developers who want to understand the theory and algorithms behind modern techniques used to solve large sparse linear systems. The book also serves as an excellent practical resource for students with an interest in combinatorial scientific computing.Preface; Chapter 1: Introduction; Chapter 2: Basic algorithms; Chapter 3: Solving triangular systems; Chapter 4: Cholesky factorization; Chapter 5: Orthogonal methods; Chapter 6: LU factorization; Chapter 7: Fill-reducing orderings; Chapter 8: Solving sparse linear systems; Chapter 9: CSparse; Chapter 10: Sparse matrices in MATLAB; Appendix: Basics of the C programming language; Bibliography; Index.