Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Solution Methods For Integral Equations
Download Solution Methods For Integral Equations full books in PDF, epub, and Kindle. Read online Solution Methods For Integral Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Solution Methods for Integral Equations by : M. A. Goldberg
Download or read book Solution Methods for Integral Equations written by M. A. Goldberg and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Computational Methods for Integral Equations by : L. M. Delves
Download or read book Computational Methods for Integral Equations written by L. M. Delves and published by CUP Archive. This book was released on 1985 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a readable account of techniques for numerical solutions.
Book Synopsis The Fast Solution of Boundary Integral Equations by : Sergej Rjasanow
Download or read book The Fast Solution of Boundary Integral Equations written by Sergej Rjasanow and published by Springer Science & Business Media. This book was released on 2007-04-17 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a detailed description of fast boundary element methods, all based on rigorous mathematical analysis. In particular, the authors use a symmetric formulation of boundary integral equations as well as discussing Galerkin discretisation. All the necessary related stability and error estimates are derived. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given.
Book Synopsis Numerical Solution of Integral Equations by : Michael A. Golberg
Download or read book Numerical Solution of Integral Equations written by Michael A. Golberg and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.
Book Synopsis Methods in Nonlinear Integral Equations by : R Precup
Download or read book Methods in Nonlinear Integral Equations written by R Precup and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Methods in Nonlinear Integral Equations presents several extremely fruitful methods for the analysis of systems and nonlinear integral equations. They include: fixed point methods (the Schauder and Leray-Schauder principles), variational methods (direct variational methods and mountain pass theorems), and iterative methods (the discrete continuation principle, upper and lower solutions techniques, Newton's method and the generalized quasilinearization method). Many important applications for several classes of integral equations and, in particular, for initial and boundary value problems, are presented to complement the theory. Special attention is paid to the existence and localization of solutions in bounded domains such as balls and order intervals. The presentation is essentially self-contained and leads the reader from classical concepts to current ideas and methods of nonlinear analysis.
Book Synopsis The Numerical Solution of Integral Equations of the Second Kind by : Kendall E. Atkinson
Download or read book The Numerical Solution of Integral Equations of the Second Kind written by Kendall E. Atkinson and published by Cambridge University Press. This book was released on 1997-06-28 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an extensive introduction to the numerical solution of a large class of integral equations.
Book Synopsis Handbook of Integral Equations by : Andrei D. Polyanin
Download or read book Handbook of Integral Equations written by Andrei D. Polyanin and published by CRC Press. This book was released on 2008-02-12 with total page 1143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa
Book Synopsis Integral Equation Methods in Scattering Theory by : David Colton
Download or read book Integral Equation Methods in Scattering Theory written by David Colton and published by SIAM. This book was released on 2013-11-15 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book provides a rigorous treatment of the Riesz?Fredholm theory of compact operators in dual systems, followed by a derivation of the jump relations and mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions. These results are then used to study scattering problems for the Helmholtz and Maxwell equations. Readers will benefit from a full discussion of the mapping properties of scalar and vector potentials in spaces of continuous and H?lder continuous functions, an in-depth treatment of the use of boundary integral equations to solve scattering problems for acoustic and electromagnetic waves, and an introduction to inverse scattering theory with an emphasis on the ill-posedness and nonlinearity of the inverse scattering problem.
Book Synopsis Linear and Nonlinear Integral Equations by : Abdul-Majid Wazwaz
Download or read book Linear and Nonlinear Integral Equations written by Abdul-Majid Wazwaz and published by Springer Science & Business Media. This book was released on 2011-11-24 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.
Book Synopsis Integral Equations by : B. L. Moiseiwitsch
Download or read book Integral Equations written by B. L. Moiseiwitsch and published by Courier Corporation. This book was released on 2011-11-30 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text begins with simple examples of a variety of integral equations and the methods of their solution, and progresses to become gradually more abstract and encompass discussions of Hilbert space. 1977 edition.
Book Synopsis Computational Methods for Linear Integral Equations by : Prem Kythe
Download or read book Computational Methods for Linear Integral Equations written by Prem Kythe and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents numerical methods and computational aspects for linear integral equations. Such equations occur in various areas of applied mathematics, physics, and engineering. The material covered in this book, though not exhaustive, offers useful techniques for solving a variety of problems. Historical information cover ing the nineteenth and twentieth centuries is available in fragments in Kantorovich and Krylov (1958), Anselone (1964), Mikhlin (1967), Lonseth (1977), Atkinson (1976), Baker (1978), Kondo (1991), and Brunner (1997). Integral equations are encountered in a variety of applications in many fields including continuum mechanics, potential theory, geophysics, electricity and mag netism, kinetic theory of gases, hereditary phenomena in physics and biology, renewal theory, quantum mechanics, radiation, optimization, optimal control sys tems, communication theory, mathematical economics, population genetics, queue ing theory, and medicine. Most of the boundary value problems involving differ ential equations can be converted into problems in integral equations, but there are certain problems which can be formulated only in terms of integral equations. A computational approach to the solution of integral equations is, therefore, an essential branch of scientific inquiry.
Book Synopsis Methods of Analysis and Solutions of Crack Problems by : George C. Sih
Download or read book Methods of Analysis and Solutions of Crack Problems written by George C. Sih and published by Springer Science & Business Media. This book was released on 1973-01-31 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is weH known that the traditional failure criteria cannot adequately explain failures which occur at a nominal stress level considerably lower than the ultimate strength of the material. The current procedure for predicting the safe loads or safe useful life of a structural member has been evolved around the discipline oflinear fracture mechanics. This approach introduces the concept of a crack extension force which can be used to rank materials in some order of fracture resistance. The idea is to determine the largest crack that a material will tolerate without failure. Laboratory methods for characterizing the fracture toughness of many engineering materials are now available. While these test data are useful for providing some rough guidance in the choice of materials, it is not clear how they could be used in the design of a structure. The understanding of the relationship between laboratory tests and fracture design of structures is, to say the least, deficient. Fracture mechanics is presently at astandstill until the basic problems of scaling from laboratory models to fuH size structures and mixed mode crack propagation are resolved. The answers to these questions require some basic understanding ofthe theory and will not be found by testing more specimens. The current theory of fracture is inadequate for many reasons. First of aH it can only treat idealized problems where the applied load must be directed normal to the crack plane.
Book Synopsis Analytical and Numerical Methods for Volterra Equations by : Peter Linz
Download or read book Analytical and Numerical Methods for Volterra Equations written by Peter Linz and published by SIAM. This book was released on 1985-01-01 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.
Book Synopsis Integral Equations by : Wolfgang Hackbusch
Download or read book Integral Equations written by Wolfgang Hackbusch and published by Birkhäuser. This book was released on 2012-12-06 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.
Book Synopsis Integral Equations and Their Applications by : Matiur Rahman
Download or read book Integral Equations and Their Applications written by Matiur Rahman and published by WIT Press. This book was released on 2007 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals with linear integral equations, that is, equations involving an unknown function which appears under the integral sign and contains topics such as Abel's integral equation, Volterra integral equations, Fredholm integral integral equations, singular and nonlinear integral equations, orthogonal systems of functions, Green's function as a symmetric kernel of the integral equations.
Book Synopsis First Course In Integral Equations, A (Second Edition) by : Abdul-majid Wazwaz
Download or read book First Course In Integral Equations, A (Second Edition) written by Abdul-majid Wazwaz and published by World Scientific Publishing Company. This book was released on 2015-05-04 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition integrates the newly developed methods with classical techniques to give both modern and powerful approaches for solving integral equations. It provides a comprehensive treatment of linear and nonlinear Fredholm and Volterra integral equations of the first and second kinds. The materials are presented in an accessible and straightforward manner to readers, particularly those from non-mathematics backgrounds. Numerous well-explained applications and examples as well as practical exercises are presented to guide readers through the text. Selected applications from mathematics, science and engineering are investigated by using the newly developed methods.This volume consists of nine chapters, pedagogically organized, with six chapters devoted to linear integral equations, two chapters on nonlinear integral equations, and the last chapter on applications. It is intended for scholars and researchers, and can be used for advanced undergraduate and graduate students in applied mathematics, science and engineering.Click here for solutions manual.
Book Synopsis Integral Equation Methods for Electromagnetics by : John L. Volakis
Download or read book Integral Equation Methods for Electromagnetics written by John L. Volakis and published by IET. This book was released on 2012-06-30 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the most advanced and current solutions.