Perspectives on Data Science for Software Engineering

Download Perspectives on Data Science for Software Engineering PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 0128042613
Total Pages : 410 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Perspectives on Data Science for Software Engineering by : Tim Menzies

Download or read book Perspectives on Data Science for Software Engineering written by Tim Menzies and published by Morgan Kaufmann. This book was released on 2016-07-14 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perspectives on Data Science for Software Engineering presents the best practices of seasoned data miners in software engineering. The idea for this book was created during the 2014 conference at Dagstuhl, an invitation-only gathering of leading computer scientists who meet to identify and discuss cutting-edge informatics topics. At the 2014 conference, the concept of how to transfer the knowledge of experts from seasoned software engineers and data scientists to newcomers in the field highlighted many discussions. While there are many books covering data mining and software engineering basics, they present only the fundamentals and lack the perspective that comes from real-world experience. This book offers unique insights into the wisdom of the community's leaders gathered to share hard-won lessons from the trenches. Ideas are presented in digestible chapters designed to be applicable across many domains. Topics included cover data collection, data sharing, data mining, and how to utilize these techniques in successful software projects. Newcomers to software engineering data science will learn the tips and tricks of the trade, while more experienced data scientists will benefit from war stories that show what traps to avoid. - Presents the wisdom of community experts, derived from a summit on software analytics - Provides contributed chapters that share discrete ideas and technique from the trenches - Covers top areas of concern, including mining security and social data, data visualization, and cloud-based data - Presented in clear chapters designed to be applicable across many domains

Perspectives on Data Science for Software Engineering

Download Perspectives on Data Science for Software Engineering PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 9780128042069
Total Pages : 0 pages
Book Rating : 4.0/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Perspectives on Data Science for Software Engineering by : Tim Menzies

Download or read book Perspectives on Data Science for Software Engineering written by Tim Menzies and published by Morgan Kaufmann. This book was released on 2016-07-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perspectives on Data Science for Software Engineering presents the best practices of seasoned data miners in software engineering. The idea for this book was created during the 2014 conference at Dagstuhl, an invitation-only gathering of leading computer scientists who meet to identify and discuss cutting-edge informatics topics. At the 2014 conference, the concept of how to transfer the knowledge of experts from seasoned software engineers and data scientists to newcomers in the field highlighted many discussions. While there are many books covering data mining and software engineering basics, they present only the fundamentals and lack the perspective that comes from real-world experience. This book offers unique insights into the wisdom of the community's leaders gathered to share hard-won lessons from the trenches. Ideas are presented in digestible chapters designed to be applicable across many domains. Topics included cover data collection, data sharing, data mining, and how to utilize these techniques in successful software projects. Newcomers to software engineering data science will learn the tips and tricks of the trade, while more experienced data scientists will benefit from war stories that show what traps to avoid.

Data Science from Scratch

Download Data Science from Scratch PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491904399
Total Pages : 336 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Data Science from Scratch by : Joel Grus

Download or read book Data Science from Scratch written by Joel Grus and published by "O'Reilly Media, Inc.". This book was released on 2015-04-14 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Sharing Data and Models in Software Engineering

Download Sharing Data and Models in Software Engineering PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 0124173071
Total Pages : 415 pages
Book Rating : 4.1/5 (241 download)

DOWNLOAD NOW!


Book Synopsis Sharing Data and Models in Software Engineering by : Tim Menzies

Download or read book Sharing Data and Models in Software Engineering written by Tim Menzies and published by Morgan Kaufmann. This book was released on 2014-12-22 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science for Software Engineering: Sharing Data and Models presents guidance and procedures for reusing data and models between projects to produce results that are useful and relevant. Starting with a background section of practical lessons and warnings for beginner data scientists for software engineering, this edited volume proceeds to identify critical questions of contemporary software engineering related to data and models. Learn how to adapt data from other organizations to local problems, mine privatized data, prune spurious information, simplify complex results, how to update models for new platforms, and more. Chapters share largely applicable experimental results discussed with the blend of practitioner focused domain expertise, with commentary that highlights the methods that are most useful, and applicable to the widest range of projects. Each chapter is written by a prominent expert and offers a state-of-the-art solution to an identified problem facing data scientists in software engineering. Throughout, the editors share best practices collected from their experience training software engineering students and practitioners to master data science, and highlight the methods that are most useful, and applicable to the widest range of projects. - Shares the specific experience of leading researchers and techniques developed to handle data problems in the realm of software engineering - Explains how to start a project of data science for software engineering as well as how to identify and avoid likely pitfalls - Provides a wide range of useful qualitative and quantitative principles ranging from very simple to cutting edge research - Addresses current challenges with software engineering data such as lack of local data, access issues due to data privacy, increasing data quality via cleaning of spurious chunks in data

The Art and Science of Analyzing Software Data

Download The Art and Science of Analyzing Software Data PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0124115438
Total Pages : 673 pages
Book Rating : 4.1/5 (241 download)

DOWNLOAD NOW!


Book Synopsis The Art and Science of Analyzing Software Data by : Christian Bird

Download or read book The Art and Science of Analyzing Software Data written by Christian Bird and published by Elsevier. This book was released on 2015-09-02 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Art and Science of Analyzing Software Data provides valuable information on analysis techniques often used to derive insight from software data. This book shares best practices in the field generated by leading data scientists, collected from their experience training software engineering students and practitioners to master data science. The book covers topics such as the analysis of security data, code reviews, app stores, log files, and user telemetry, among others. It covers a wide variety of techniques such as co-change analysis, text analysis, topic analysis, and concept analysis, as well as advanced topics such as release planning and generation of source code comments. It includes stories from the trenches from expert data scientists illustrating how to apply data analysis in industry and open source, present results to stakeholders, and drive decisions. - Presents best practices, hints, and tips to analyze data and apply tools in data science projects - Presents research methods and case studies that have emerged over the past few years to further understanding of software data - Shares stories from the trenches of successful data science initiatives in industry

Analyzing the Analyzers

Download Analyzing the Analyzers PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1449368409
Total Pages : 45 pages
Book Rating : 4.4/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Analyzing the Analyzers by : Harlan Harris

Download or read book Analyzing the Analyzers written by Harlan Harris and published by "O'Reilly Media, Inc.". This book was released on 2013-06-10 with total page 45 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the excitement around "data science," "big data," and "analytics," the ambiguity of these terms has led to poor communication between data scientists and organizations seeking their help. In this report, authors Harlan Harris, Sean Murphy, and Marck Vaisman examine their survey of several hundred data science practitioners in mid-2012, when they asked respondents how they viewed their skills, careers, and experiences with prospective employers. The results are striking. Based on the survey data, the authors found that data scientists today can be clustered into four subgroups, each with a different mix of skillsets. Their purpose is to identify a new, more precise vocabulary for data science roles, teams, and career paths. This report describes: Four data scientist clusters: Data Businesspeople, Data Creatives, Data Developers, and Data Researchers Cases in miscommunication between data scientists and organizations looking to hire Why "T-shaped" data scientists have an advantage in breadth and depth of skills How organizations can apply the survey results to identify, train, integrate, team up, and promote data scientists

Software Engineering for Data Scientists

Download Software Engineering for Data Scientists PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1098136179
Total Pages : 258 pages
Book Rating : 4.0/5 (981 download)

DOWNLOAD NOW!


Book Synopsis Software Engineering for Data Scientists by : Catherine Nelson

Download or read book Software Engineering for Data Scientists written by Catherine Nelson and published by "O'Reilly Media, Inc.". This book was released on 2024-04-16 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science happens in code. The ability to write reproducible, robust, scaleable code is key to a data science project's success—and is absolutely essential for those working with production code. This practical book bridges the gap between data science and software engineering,and clearly explains how to apply the best practices from software engineering to data science. Examples are provided in Python, drawn from popular packages such as NumPy and pandas. If you want to write better data science code, this guide covers the essential topics that are often missing from introductory data science or coding classes, including how to: Understand data structures and object-oriented programming Clearly and skillfully document your code Package and share your code Integrate data science code with a larger code base Learn how to write APIs Create secure code Apply best practices to common tasks such as testing, error handling, and logging Work more effectively with software engineers Write more efficient, maintainable, and robust code in Python Put your data science projects into production And more

Contemporary Empirical Methods in Software Engineering

Download Contemporary Empirical Methods in Software Engineering PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030324893
Total Pages : 525 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Contemporary Empirical Methods in Software Engineering by : Michael Felderer

Download or read book Contemporary Empirical Methods in Software Engineering written by Michael Felderer and published by Springer Nature. This book was released on 2020-08-27 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents contemporary empirical methods in software engineering related to the plurality of research methodologies, human factors, data collection and processing, aggregation and synthesis of evidence, and impact of software engineering research. The individual chapters discuss methods that impact the current evolution of empirical software engineering and form the backbone of future research. Following an introductory chapter that outlines the background of and developments in empirical software engineering over the last 50 years and provides an overview of the subsequent contributions, the remainder of the book is divided into four parts: Study Strategies (including e.g. guidelines for surveys or design science); Data Collection, Production, and Analysis (highlighting approaches from e.g. data science, biometric measurement, and simulation-based studies); Knowledge Acquisition and Aggregation (highlighting literature research, threats to validity, and evidence aggregation); and Knowledge Transfer (discussing open science and knowledge transfer with industry). Empirical methods like experimentation have become a powerful means of advancing the field of software engineering by providing scientific evidence on software development, operation, and maintenance, but also by supporting practitioners in their decision-making and learning processes. Thus the book is equally suitable for academics aiming to expand the field and for industrial researchers and practitioners looking for novel ways to check the validity of their assumptions and experiences. Chapter 17 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Build a Career in Data Science

Download Build a Career in Data Science PDF Online Free

Author :
Publisher : Manning
ISBN 13 : 1617296244
Total Pages : 352 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Build a Career in Data Science by : Emily Robinson

Download or read book Build a Career in Data Science written by Emily Robinson and published by Manning. This book was released on 2020-03-24 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder

Data Science in Engineering and Management

Download Data Science in Engineering and Management PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000520846
Total Pages : 159 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Data Science in Engineering and Management by : Zdzislaw Polkowski

Download or read book Data Science in Engineering and Management written by Zdzislaw Polkowski and published by CRC Press. This book was released on 2021-12-31 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings insight into data science and offers applications and implementation strategies. It includes current developments and future directions and covers the concept of data science along with its origins. It focuses on the mechanisms of extracting data along with classifications, architectural concepts, and business intelligence with predictive analysis. Data Science in Engineering and Management: Applications, New Developments, and Future Trends introduces the concept of data science, its use, and its origins, as well as presenting recent trends, highlighting future developments; discussing problems and offering solutions. It provides an overview of applications on data linked to engineering and management perspectives and also covers how data scientists, analysts, and program managers who are interested in productivity and improving their business can do so by incorporating a data science workflow effectively. This book is useful to researchers involved in data science and can be a reference for future research. It is also suitable as supporting material for undergraduate and graduate-level courses in related engineering disciplines.

The Data Science Handbook

Download The Data Science Handbook PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119092949
Total Pages : 420 pages
Book Rating : 4.1/5 (19 download)

DOWNLOAD NOW!


Book Synopsis The Data Science Handbook by : Field Cady

Download or read book The Data Science Handbook written by Field Cady and published by John Wiley & Sons. This book was released on 2017-02-28 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon.

Data Science with Java

Download Data Science with Java PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1491934069
Total Pages : 241 pages
Book Rating : 4.4/5 (919 download)

DOWNLOAD NOW!


Book Synopsis Data Science with Java by : Michael R. Brzustowicz, PhD

Download or read book Data Science with Java written by Michael R. Brzustowicz, PhD and published by "O'Reilly Media, Inc.". This book was released on 2017-06-06 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science is booming thanks to R and Python, but Java brings the robustness, convenience, and ability to scale critical to today’s data science applications. With this practical book, Java software engineers looking to add data science skills will take a logical journey through the data science pipeline. Author Michael Brzustowicz explains the basic math theory behind each step of the data science process, as well as how to apply these concepts with Java. You’ll learn the critical roles that data IO, linear algebra, statistics, data operations, learning and prediction, and Hadoop MapReduce play in the process. Throughout this book, you’ll find code examples you can use in your applications. Examine methods for obtaining, cleaning, and arranging data into its purest form Understand the matrix structure that your data should take Learn basic concepts for testing the origin and validity of data Transform your data into stable and usable numerical values Understand supervised and unsupervised learning algorithms, and methods for evaluating their success Get up and running with MapReduce, using customized components suitable for data science algorithms

Software Engineering for Data Scientists

Download Software Engineering for Data Scientists PDF Online Free

Author :
Publisher :
ISBN 13 : 9781098136208
Total Pages : 0 pages
Book Rating : 4.1/5 (362 download)

DOWNLOAD NOW!


Book Synopsis Software Engineering for Data Scientists by : Catherine Nelson

Download or read book Software Engineering for Data Scientists written by Catherine Nelson and published by . This book was released on 2024-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data science happens in code. The ability to write reproducible, robust, scaleable code is key to a data science project's success--and is absolutely essential for those working with production code. This practical book bridges the gap between data science and software engineering, clearly explaining how to apply the best practices from software engineering to data science. Examples are provided in Python, drawn from popular packages such as NumPy and pandas. If you want to write better data science code, this guide covers the essential topics you need (and that are often missing from introductory data science or coding classes), including how to: Understand data structures and object-oriented programming Clearly and skillfully document your code Package and share your code Integrate data science code with a larger codebase Write APIs Create secure code Apply best practices to common tasks such as testing, error handling, and logging Work more effectively with software engineers Write more efficient, maintainable, and robust code in Python Put your data science projects into production And more

Doing Data Science

Download Doing Data Science PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 144936389X
Total Pages : 320 pages
Book Rating : 4.4/5 (493 download)

DOWNLOAD NOW!


Book Synopsis Doing Data Science by : Cathy O'Neil

Download or read book Doing Data Science written by Cathy O'Neil and published by "O'Reilly Media, Inc.". This book was released on 2013-10-09 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.

Data Science on AWS

Download Data Science on AWS PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492079367
Total Pages : 524 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Data Science on AWS by : Chris Fregly

Download or read book Data Science on AWS written by Chris Fregly and published by "O'Reilly Media, Inc.". This book was released on 2021-04-07 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more

Machine Learning Bookcamp

Download Machine Learning Bookcamp PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1617296813
Total Pages : 470 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Bookcamp by : Alexey Grigorev

Download or read book Machine Learning Bookcamp written by Alexey Grigorev and published by Simon and Schuster. This book was released on 2021-11-23 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning.

Think Like a Data Scientist

Download Think Like a Data Scientist PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638355207
Total Pages : 540 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Think Like a Data Scientist by : Brian Godsey

Download or read book Think Like a Data Scientist written by Brian Godsey and published by Simon and Schuster. This book was released on 2017-03-09 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Think Like a Data Scientist presents a step-by-step approach to data science, combining analytic, programming, and business perspectives into easy-to-digest techniques and thought processes for solving real world data-centric problems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Data collected from customers, scientific measurements, IoT sensors, and so on is valuable only if you understand it. Data scientists revel in the interesting and rewarding challenge of observing, exploring, analyzing, and interpreting this data. Getting started with data science means more than mastering analytic tools and techniques, however; the real magic happens when you begin to think like a data scientist. This book will get you there. About the Book Think Like a Data Scientist teaches you a step-by-step approach to solving real-world data-centric problems. By breaking down carefully crafted examples, you'll learn to combine analytic, programming, and business perspectives into a repeatable process for extracting real knowledge from data. As you read, you'll discover (or remember) valuable statistical techniques and explore powerful data science software. More importantly, you'll put this knowledge together using a structured process for data science. When you've finished, you'll have a strong foundation for a lifetime of data science learning and practice. What's Inside The data science process, step-by-step How to anticipate problems Dealing with uncertainty Best practices in software and scientific thinking About the Reader Readers need beginner programming skills and knowledge of basic statistics. About the Author Brian Godsey has worked in software, academia, finance, and defense and has launched several data-centric start-ups. Table of Contents PART 1 - PREPARING AND GATHERING DATA AND KNOWLEDGE Philosophies of data science Setting goals by asking good questions Data all around us: the virtual wilderness Data wrangling: from capture to domestication Data assessment: poking and prodding PART 2 - BUILDING A PRODUCT WITH SOFTWARE AND STATISTICS Developing a plan Statistics and modeling: concepts and foundations Software: statistics in action Supplementary software: bigger, faster, more efficient Plan execution: putting it all together PART 3 - FINISHING OFF THE PRODUCT AND WRAPPING UP Delivering a product After product delivery: problems and revisions Wrapping up: putting the project away