Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Robust Techniques For High Dimensional Data
Download Robust Techniques For High Dimensional Data full books in PDF, epub, and Kindle. Read online Robust Techniques For High Dimensional Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Robust Correlation by : Georgy L. Shevlyakov
Download or read book Robust Correlation written by Georgy L. Shevlyakov and published by John Wiley & Sons. This book was released on 2016-09-19 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: This bookpresents material on both the analysis of the classical concepts of correlation and on the development of their robust versions, as well as discussing the related concepts of correlation matrices, partial correlation, canonical correlation, rank correlations, with the corresponding robust and non-robust estimation procedures. Every chapter contains a set of examples with simulated and real-life data. Key features: Makes modern and robust correlation methods readily available and understandable to practitioners, specialists, and consultants working in various fields. Focuses on implementation of methodology and application of robust correlation with R. Introduces the main approaches in robust statistics, such as Huber’s minimax approach and Hampel’s approach based on influence functions. Explores various robust estimates of the correlation coefficient including the minimax variance and bias estimates as well as the most B- and V-robust estimates. Contains applications of robust correlation methods to exploratory data analysis, multivariate statistics, statistics of time series, and to real-life data. Includes an accompanying website featuring computer code and datasets Features exercises and examples throughout the text using both small and large data sets. Theoretical and applied statisticians, specialists in multivariate statistics, robust statistics, robust time series analysis, data analysis and signal processing will benefit from this book. Practitioners who use correlation based methods in their work as well as postgraduate students in statistics will also find this book useful.
Download or read book Data Depth written by Regina Y. Liu and published by American Mathematical Soc.. This book was released on 2006 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a collection of some of the research presented at the workshop of the same name held in May 2003 at Rutgers University. The workshop brought together researchers from two different communities: statisticians and specialists in computational geometry. The main idea unifying these two research areas turned out to be the notion of data depth, which is an important notion both in statistics and in the study of efficiency of algorithms used in computational geometry. Many of the articles in the book lay down the foundations for further collaboration and interdisciplinary research. Information for our distributors: Co-published with the Center for Discrete Mathematics and Theoretical Computer Science beginning with Volume 8. Volumes 1-7 were co-published with the Association for Computer Machinery (ACM).
Book Synopsis Robust Regression and Outlier Detection by : Peter J. Rousseeuw
Download or read book Robust Regression and Outlier Detection written by Peter J. Rousseeuw and published by John Wiley & Sons. This book was released on 2005-02-25 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "The writing style is clear and informal, and much of thediscussion is oriented to application. In short, the book is akeeper." –Mathematical Geology "I would highly recommend the addition of this book to thelibraries of both students and professionals. It is a usefultextbook for the graduate student, because it emphasizes both thephilosophy and practice of robustness in regression settings, andit provides excellent examples of precise, logical proofs oftheorems. . . .Even for those who are familiar with robustness, thebook will be a good reference because it consolidates the researchin high-breakdown affine equivariant estimators and includes anextensive bibliography in robust regression, outlier diagnostics,and related methods. The aim of this book, the authors tell us, is‘to make robust regression available for everyday statisticalpractice.’ Rousseeuw and Leroy have included all of thenecessary ingredients to make this happen." –Journal of the American Statistical Association
Book Synopsis High-Dimensional Probability by : Roman Vershynin
Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Walter Daelemans
Download or read book Machine Learning and Knowledge Discovery in Databases written by Walter Daelemans and published by Springer Science & Business Media. This book was released on 2008-09-04 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.
Book Synopsis Robust Statistical Procedures by : Peter J. Huber
Download or read book Robust Statistical Procedures written by Peter J. Huber and published by SIAM. This book was released on 1996-01-01 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is a brief, well-organized, and easy-to-follow introduction and overview of robust statistics. Huber focuses primarily on the important and clearly understood case of distribution robustness, where the shape of the true underlying distribution deviates slightly from the assumed model (usually the Gaussian law). An additional chapter on recent developments in robustness has been added and the reference list has been expanded and updated from the 1977 edition.
Book Synopsis High-Dimensional Statistics by : Martin J. Wainwright
Download or read book High-Dimensional Statistics written by Martin J. Wainwright and published by Cambridge University Press. This book was released on 2019-02-21 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.
Book Synopsis Algorithmic High-Dimensional Robust Statistics by : Ilias Diakonikolas
Download or read book Algorithmic High-Dimensional Robust Statistics written by Ilias Diakonikolas and published by Cambridge University Press. This book was released on 2023-08-31 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust statistics is the study of designing estimators that perform well even when the dataset significantly deviates from the idealized modeling assumptions, such as in the presence of model misspecification or adversarial outliers in the dataset. The classical statistical theory, dating back to pioneering works by Tukey and Huber, characterizes the information-theoretic limits of robust estimation for most common problems. A recent line of work in computer science gave the first computationally efficient robust estimators in high dimensions for a range of learning tasks. This reference text for graduate students, researchers, and professionals in machine learning theory, provides an overview of recent developments in algorithmic high-dimensional robust statistics, presenting the underlying ideas in a clear and unified manner, while leveraging new perspectives on the developed techniques to provide streamlined proofs of these results. The most basic and illustrative results are analyzed in each chapter, while more tangential developments are explored in the exercises.
Book Synopsis Robust Statistics by : Ricardo A. Maronna
Download or read book Robust Statistics written by Ricardo A. Maronna and published by John Wiley & Sons. This book was released on 2019-01-04 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.
Book Synopsis Large Sample Covariance Matrices and High-Dimensional Data Analysis by : Jianfeng Yao
Download or read book Large Sample Covariance Matrices and High-Dimensional Data Analysis written by Jianfeng Yao and published by Cambridge University Press. This book was released on 2015-03-26 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-dimensional data appear in many fields, and their analysis has become increasingly important in modern statistics. However, it has long been observed that several well-known methods in multivariate analysis become inefficient, or even misleading, when the data dimension p is larger than, say, several tens. A seminal example is the well-known inefficiency of Hotelling's T2-test in such cases. This example shows that classical large sample limits may no longer hold for high-dimensional data; statisticians must seek new limiting theorems in these instances. Thus, the theory of random matrices (RMT) serves as a much-needed and welcome alternative framework. Based on the authors' own research, this book provides a first-hand introduction to new high-dimensional statistical methods derived from RMT. The book begins with a detailed introduction to useful tools from RMT, and then presents a series of high-dimensional problems with solutions provided by RMT methods.
Book Synopsis Comprehensive Chemometrics by : Steven Brown
Download or read book Comprehensive Chemometrics written by Steven Brown and published by Elsevier. This book was released on 2020-05-26 with total page 2948 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Chemometrics, Second Edition, Four Volume Set features expanded and updated coverage, along with new content that covers advances in the field since the previous edition published in 2009. Subject of note include updates in the fields of multidimensional and megavariate data analysis, omics data analysis, big chemical and biochemical data analysis, data fusion and sparse methods. The book follows a similar structure to the previous edition, using the same section titles to frame articles. Many chapters from the previous edition are updated, but there are also many new chapters on the latest developments. Presents integrated reviews of each chemical and biological method, examining their merits and limitations through practical examples and extensive visuals Bridges a gap in knowledge, covering developments in the field since the first edition published in 2009 Meticulously organized, with articles split into 4 sections and 12 sub-sections on key topics to allow students, researchers and professionals to find relevant information quickly and easily Written by academics and practitioners from various fields and regions to ensure that the knowledge within is easily understood and applicable to a large audience Presents integrated reviews of each chemical and biological method, examining their merits and limitations through practical examples and extensive visuals Bridges a gap in knowledge, covering developments in the field since the first edition published in 2009 Meticulously organized, with articles split into 4 sections and 12 sub-sections on key topics to allow students, researchers and professionals to find relevant information quickly and easily Written by academics and practitioners from various fields and regions to ensure that the knowledge within is easily understood and applicable to a large audience
Book Synopsis An Introduction to the Analysis of Algorithms by : Robert Sedgewick
Download or read book An Introduction to the Analysis of Algorithms written by Robert Sedgewick and published by Addison-Wesley. This book was released on 2013-01-18 with total page 735 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite growing interest, basic information on methods and models for mathematically analyzing algorithms has rarely been directly accessible to practitioners, researchers, or students. An Introduction to the Analysis of Algorithms, Second Edition, organizes and presents that knowledge, fully introducing primary techniques and results in the field. Robert Sedgewick and the late Philippe Flajolet have drawn from both classical mathematics and computer science, integrating discrete mathematics, elementary real analysis, combinatorics, algorithms, and data structures. They emphasize the mathematics needed to support scientific studies that can serve as the basis for predicting algorithm performance and for comparing different algorithms on the basis of performance. Techniques covered in the first half of the book include recurrences, generating functions, asymptotics, and analytic combinatorics. Structures studied in the second half of the book include permutations, trees, strings, tries, and mappings. Numerous examples are included throughout to illustrate applications to the analysis of algorithms that are playing a critical role in the evolution of our modern computational infrastructure. Improvements and additions in this new edition include Upgraded figures and code An all-new chapter introducing analytic combinatorics Simplified derivations via analytic combinatorics throughout The book’s thorough, self-contained coverage will help readers appreciate the field’s challenges, prepare them for advanced results—covered in their monograph Analytic Combinatorics and in Donald Knuth’s The Art of Computer Programming books—and provide the background they need to keep abreast of new research. "[Sedgewick and Flajolet] are not only worldwide leaders of the field, they also are masters of exposition. I am sure that every serious computer scientist will find this book rewarding in many ways." —From the Foreword by Donald E. Knuth
Book Synopsis New Directions in Statistical Physics by : Luc T. Wille
Download or read book New Directions in Statistical Physics written by Luc T. Wille and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unique insight into the latest breakthroughs in a consistent manner, at a level accessible to undergraduates, yet with enough attention to the theory and computation to satisfy the professional researcher Statistical physics addresses the study and understanding of systems with many degrees of freedom. As such it has a rich and varied history, with applications to thermodynamics, magnetic phase transitions, and order/disorder transformations, to name just a few. However, the tools of statistical physics can be profitably used to investigate any system with a large number of components. Thus, recent years have seen these methods applied in many unexpected directions, three of which are the main focus of this volume. These applications have been remarkably successful and have enriched the financial, biological, and engineering literature. Although reported in the physics literature, the results tend to be scattered and the underlying unity of the field overlooked.
Book Synopsis Beyond the Worst-Case Analysis of Algorithms by : Tim Roughgarden
Download or read book Beyond the Worst-Case Analysis of Algorithms written by Tim Roughgarden and published by Cambridge University Press. This book was released on 2021-01-14 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces exciting new methods for assessing algorithms for problems ranging from clustering to linear programming to neural networks.
Book Synopsis ICT Analysis and Applications by : Simon Fong
Download or read book ICT Analysis and Applications written by Simon Fong and published by Springer Nature. This book was released on 2020-02-03 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book proposes new technologies and discusses future solutions for ICT design infrastructures, as reflected in high-quality papers presented at the 4th International Conference on ICT for Sustainable Development (ICT4SD 2019), held in Goa, India, on 5–6 July 2019. The conference provided a valuable forum for cutting-edge research discussions among pioneering researchers, scientists, industrial engineers, and students from all around the world. Bringing together experts from different countries, the book explores a range of central issues from an international perspective.
Book Synopsis Developments in Robust Statistics by : Rudolf Dutter
Download or read book Developments in Robust Statistics written by Rudolf Dutter and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aspects of Robust Statistics are important in many areas. Based on the International Conference on Robust Statistics 2001 (ICORS 2001) in Vorau, Austria, this volume discusses future directions of the discipline, bringing together leading scientists, experienced researchers and practitioners, as well as younger researchers. The papers cover a multitude of different aspects of Robust Statistics. For instance, the fundamental problem of data summary (weights of evidence) is considered and its robustness properties are studied. Further theoretical subjects include e.g.: robust methods for skewness, time series, longitudinal data, multivariate methods, and tests. Some papers deal with computational aspects and algorithms. Finally, the aspects of application and programming tools complete the volume.
Book Synopsis Applied Biclustering Methods for Big and High-Dimensional Data Using R by : Adetayo Kasim
Download or read book Applied Biclustering Methods for Big and High-Dimensional Data Using R written by Adetayo Kasim and published by CRC Press. This book was released on 2016-10-03 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proven Methods for Big Data Analysis As big data has become standard in many application areas, challenges have arisen related to methodology and software development, including how to discover meaningful patterns in the vast amounts of data. Addressing these problems, Applied Biclustering Methods for Big and High-Dimensional Data Using R shows how to apply biclustering methods to find local patterns in a big data matrix. The book presents an overview of data analysis using biclustering methods from a practical point of view. Real case studies in drug discovery, genetics, marketing research, biology, toxicity, and sports illustrate the use of several biclustering methods. References to technical details of the methods are provided for readers who wish to investigate the full theoretical background. All the methods are accompanied with R examples that show how to conduct the analyses. The examples, software, and other materials are available on a supplementary website.