Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Rigid Rotor Dynamics
Download Rigid Rotor Dynamics full books in PDF, epub, and Kindle. Read online Rigid Rotor Dynamics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Download or read book Rotor Dynamics written by J. S. Rao and published by New Age International. This book was released on 1996 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Third Revised And Enlarged Edition Of The Book Presents An In-Depth Study Of The Dynamic Behaviour Of Rotating And Reciprocating Machinery. It Evolved Out Of Lectures Delivered At Different Universities Over The Last Two Decades. The Book Deals With Torsional And Bending Vibrations Of Rotors, Stability Aspects, Balancing And Condition Monitoring. Closed Form Solutions Are Given Wherever Possible And Parametric Studies Presented To Give A Clear Understanding Of The Subject. Transfer Matrix Methods Is Extensively Used For General Class Of Rotors For Both Bending And Torsional Vibrations.Special Attentions Are Given To Transient Analysis Of The Rotors Which Is Becoming An Essential Part Of The Design Of High Speed Machinery. Systems With Fluid Film Bearings, Cracked Rotors And Two Spool Rotors Are Also Presented.A First Course On Theory Of Vibration Is A Prerequisite To This Study. Analysis Used Is Fairly Simple, But Sufficiently Advanced To The Requisite Level Of Predicting Practical Observations. As Far As Possible, Practical Examples Are Illustrated, So That The Book Is Also Useful To Practising Engineers.A Special Feature Of This Book Is Diagnostics Of Rotating Machinery Using Vibration Signature Analysis And Application Of Expert Systems To A Field Engineer In Trouble Shooting Work.
Book Synopsis Rotordynamics of Turbomachinery by : John M. Vance
Download or read book Rotordynamics of Turbomachinery written by John M. Vance and published by John Wiley & Sons. This book was released on 1991-01-16 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes the rotordynamic considerations that are important to the successful design or troubleshooting of a turbomachine. Shows how bearing design, fluid seals, and rotor geometry affect rotordynamic behavior (vibration, shaft whirling, bearing loads, and critical speeds), and describes two successful computational methods for rotordynamic analysis in terms that can be understood by practicing engineers. Gives descriptive accounts of the state of the art in several areas of the field and presents important mathematical or computational concepts, describing equations and formulas in physical terms for better understanding. Also offers tips for troubleshooting unstable machines and provides practical interpretations of vibration measurements.
Book Synopsis Dynamics of Rotating Systems by : Giancarlo Genta
Download or read book Dynamics of Rotating Systems written by Giancarlo Genta and published by Springer Science & Business Media. This book was released on 2007-01-04 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an up-to-date review of rotor dynamics, dealing with basic topics as well as a number of specialized topics usually available only in journal articles Unlike other books on rotordynamics, this treats the entire machine as a system, with the rotor as just one component
Book Synopsis Dynamics of Rotating Machines by : M. I. Friswell
Download or read book Dynamics of Rotating Machines written by M. I. Friswell and published by Cambridge University Press. This book was released on 2010-03-31 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enables engineers to understand the dynamics of rotating machines, from basic explanations to detailed numerical models and analysis.
Book Synopsis Analytical Methods in Rotor Dynamics by : Andrew D. Dimarogonas
Download or read book Analytical Methods in Rotor Dynamics written by Andrew D. Dimarogonas and published by Springer Science & Business Media. This book was released on 2013-02-19 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design and construction of rotating machinery operating at supercritical speeds was, in the 1920s, an event of revolutionary importance for the then new branch of dynamics known as rotor dynamics. In the 1960s, another revolution occurred: In less than a decade, imposed by operational and economic needs, an increase in the power of turbomachinery by one order of magnitude took place. Dynamic analysis of complex rotor forms became a necessity, while the importance of approximate methods for dynamic analysis was stressed. Finally, the emergence of fracture mechanics, as a new branch of applied mechanics, provided analytical tools to investigate crack influence on the dynamic behavior of rotors. The scope of this book is based on all these developments. No topics related to the well-known classical problems are included, rather the book deals exclusively with modern high-power turbomachinery.
Book Synopsis Computational Techniques of Rotor Dynamics with the Finite Element Method by : Arne Vollan
Download or read book Computational Techniques of Rotor Dynamics with the Finite Element Method written by Arne Vollan and published by CRC Press. This book was released on 2012-03-13 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: For more than a century, we have had a firm grasp on rotor dynamics involving rigid bodies with regular shapes, such as cylinders and shafts. However, to achieve an equally solid understanding of the rotational behavior of flexible bodies—especially those with irregular shapes, such as propeller and turbine blades—we require more modern tools and methods. Computational Techniques of Rotor Dynamics with the Finite Element Method explores the application of practical finite element method (FEM)-based computational techniques and state-of-the-art engineering software. These are used to simulate behavior of rotational structures that enable the function of various types of machinery—from generators and wind turbines to airplane engines and propellers. The book’s first section focuses on the theoretical foundation of rotor dynamics, and the second concentrates on the engineering analysis of rotating structures. The authors explain techniques used in the modeling and computation of the forces involved in the rotational phenomenon. They then demonstrate how to interpret and apply the results to improve fidelity and performance. Coverage includes: Use of FEM to achieve the most accurate computational simulation of all gyroscopic forces occurring in rotational structures Details of highly efficient and accurate computational and numerical techniques for dynamic simulations Interpretation of computational results, which is instrumental to developing stable rotating machinery Practical application examples of rotational structures’ dynamic response to external and internal excitations An FEM case study that illustrates the computational complexities associated with modeling and computation of forces of rotor dynamics Assessment of propellers and turbines that are critical to the transportation and energy industries Useful to practicing engineers and graduate-level students alike, this self-contained volume also serves as an invaluable reference for researchers and instructors in this field. CRC Press Authors Speak Louis Komzsik introduces you to two books that share a common mathematical foundation, the finite element analysis technique. Watch the video.
Download or read book Rotor Systems written by Rajiv Tiwari and published by CRC Press. This book was released on 2017-11-22 with total page 1225 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to give a basic understanding of rotor dynamics phenomena with the help of simple rotor models and subsequently, the modern analysis methods for real life rotor systems. This background will be helpful in the identification of rotor-bearing system parameters and its use in futuristic model-based condition monitoring and, fault diagnostics and prognostics. The book starts with introductory material for finite element methods and moves to linear and non-linear vibrations, continuous systems, vibration measurement techniques, signal processing and error analysis, general identification techniques in engineering systems, and MATLAB analysis of simple rotors. Key Features: • Covers both transfer matrix methods (TMM) and finite element methods (FEM) • Discusses transverse and torsional vibrations • Includes worked examples with simplicity of mathematical background and a modern numerical method approach • Explores the concepts of instability analysis and dynamic balancing • Provides a basic understanding of rotor dynamics phenomena with the help of simple rotor models including modern analysis methods for real life rotor systems.
Book Synopsis Rotordynamics by : Agnieszka Muszynska
Download or read book Rotordynamics written by Agnieszka Muszynska and published by CRC Press. This book was released on 2005-05-20 with total page 1100 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the most important parts of rotating machinery, rotors are also the most prone to mechanical vibrations, which may lead to machine failure. Correction is only possible when proper and accurate diagnosis is obtained through understanding of rotor operation and all of the potential malfunctions that may occur. Mathematical modeling, in particular
Book Synopsis Turbomachinery Rotordynamics by : Dara Childs
Download or read book Turbomachinery Rotordynamics written by Dara Childs and published by John Wiley & Sons. This book was released on 1993-04-16 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Imparts the theory and analysis regarding the dynamics of rotating machinery in order to design such rotating devices as turbines, jet engines, pumps and power-transmission shafts. Takes into account the forces acting upon machine structures, bearings and related components. Provides numerical techniques for analyzing and understanding rotor systems with examples of actual designs. Features an excellent treatment of numerical methods available to obtain computer solutions for authentic design problems.
Book Synopsis Introduction to Dynamics of Rotor-bearing Systems by : Wen Jeng Chen
Download or read book Introduction to Dynamics of Rotor-bearing Systems written by Wen Jeng Chen and published by Trafford on Demand Pub. This book was released on 2007 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is written as an introduction to rotor-bearing dynamics for practicing engineers and students who are involved in rotordynamics and bearing design. The goal of this book is to provide a step-by-step approach to the understanding of fundamentals of rotor-bearing dynamics by using DyRoBeS(c) . Therefore, the emphasis of this book is on the basic principals, phenomena, modeling, and interpretation of the results. Numerous examples, from a single-degree-of-freedom system to complicated industrial rotating machinery, are employed throughout this book to illustrate these fundamental dynamic behaviors. The concepts in the text are reinforced by parametric studies and numerous illustrative examples and figures. The book begins with a brief discussion of the mathematical modeling of physical dynamic systems and an overview of the basic vibration concepts in Chapter 1. The coordinate systems and the kinematics of the rotor motion are presented in Chapter 2. A simple two-degrees-of-freedom rotor system, the Laval-Jeffcott rotor model, is utilized in Chapter 3 to demonstrate many important phenomena in rotordynamics. This simple 2DOF model provides many valuable physical insights into more practical and complicated systems. Chapter 4 discusses the rotating disk equations and rigid rotor dynamics. Chapter 5 covers the finite element formulation for a rotating shaft element. Chapter 6 deals with various types of bearings, dampers, seals and other interconnection components. All the reaction forces from these components are non-linear in nature. The concept of linearization around the static equilibrium is discussed. Chapter 7 summarizes the lateral vibration study with several practical examples. Various solution techniques and interpretation of the results are discussed. Chapter 8 is devoted to the important subject of torsional vibration. Finally, a brief description of the balancing method, influence coefficient method is presented in Chapter 9.
Book Synopsis Molecular Symmetry and Spectroscopy by : Philip Bunker
Download or read book Molecular Symmetry and Spectroscopy written by Philip Bunker and published by Elsevier. This book was released on 2012-12-02 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Symmetry and Spectroscopy deals with the use of group theory in quantum mechanics in relation to problems in molecular spectroscopy. It discusses the use of the molecular symmetry group, whose elements consist of permutations of identical nuclei with or without inversion. After reviewing the permutation groups, inversion operation, point groups, and representation of groups, the book describes the use of representations for labeling molecular energy. The text explains an approximate time independent Schrödinger equation for a molecule, as well as the effect of a nuclear permutation or the inversion of E* on such equation. The book also examines the expression for the complete molecular Hamiltonian and the several groups of operations commuting with the Hamiltonian. The energy levels of the Hamiltonian can then be symmetrically labeled by the investigator using the irreducible representations of these groups. The text explains the two techniques to change coordinates in a Schrödinger equation, namely, (1) by using a diatomic molecule in the rovibronic Schrödinger equation, and (2) by a rigid nonlinear polyatomic molecule. The book also explains that using true symmetry, basis symmetry, near symmetry, and near quantum numbers, the investigator can label molecular energy levels. The text can benefit students of molecular spectroscopy, academicians, and investigators of molecular chemistry or quantum mechanics.
Book Synopsis Linear and Nonlinear Rotordynamics by : Yukio Ishida
Download or read book Linear and Nonlinear Rotordynamics written by Yukio Ishida and published by John Wiley & Sons. This book was released on 2012-12-26 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A wide-ranging treatment of fundamental rotordynamics in order to serve engineers with the necessary knowledge to eliminate various vibration problems. New to this edition are three chapters on highly significant topics: Vibration Suppression - The chapter presents various methods and is a helpful guidance for professional engineers. Magnetic Bearings - The chapter provides fundamental knowledge and enables the reader to realize simple magnetic bearings in the laboratory. Some Practical Rotor Systems - The chapter explains various vibration characteristics of steam turbines and wind turbines. The contents of other chapters on Balancing, Vibrations due to Mechanical Elements, and Cracked Rotors are added to and revised extensively. The authors provide a classification of rotating shaft systems and general coverage of key ideas common to all branches of rotordynamics. They offers a unique analysis of dynamical problems, such as nonlinear rotordynamics, self-excited vibration, nonstationary vibration, and flow-induced oscillations. Nonlinear resonances are discussed in detail, as well as methods for shaft stability and various theoretical derivations and computational methods for analyzing rotors to determine and correct vibrations. This edition also includes case studies and problems.
Book Synopsis Rotational Spectroscopy of Diatomic Molecules by : John M. Brown
Download or read book Rotational Spectroscopy of Diatomic Molecules written by John M. Brown and published by Cambridge University Press. This book was released on 2003-04-10 with total page 1074 pages. Available in PDF, EPUB and Kindle. Book excerpt: The definitive text on the rotational spectroscopy of diatomic molecules.
Book Synopsis Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM by : Katia Lucchesi Cavalca
Download or read book Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM written by Katia Lucchesi Cavalca and published by Springer. This book was released on 2018-08-20 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: IFToMM conferences have a history of success due to the various advances achieved in the field of rotor dynamics over the past three decades. These meetings have since become a leading global event, bringing together specialists from industry and academia to promote the exchange of knowledge, ideas, and information on the latest developments in the dynamics of rotating machinery. The scope of the conference is broad, including e.g. active components and vibration control, balancing, bearings, condition monitoring, dynamic analysis and stability, wind turbines and generators, electromechanical interactions in rotor dynamics and turbochargers. The proceedings are divided into four volumes. This first volume covers the following main topics: Active Components and Vibration Control; Balancing; Bearings: Fluid Film Bearings, Magnetic Bearings, Rolling Bearings and Seals; and Blades, Bladed Systems and Impellers.
Book Synopsis A Textbook of Physical Chemistry – Volume 1 by : Mandeep Dalal
Download or read book A Textbook of Physical Chemistry – Volume 1 written by Mandeep Dalal and published by Dalal Institute. This book was released on 2018-01-01 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced-level textbook of physical chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Physical Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Quantum Mechanics – I: Postulates of quantum mechanics; Derivation of Schrodinger wave equation; Max-Born interpretation of wave functions; The Heisenberg’s uncertainty principle; Quantum mechanical operators and their commutation relations; Hermitian operators (elementary ideas, quantum mechanical operator for linear momentum, angular momentum and energy as Hermition operator); The average value of the square of Hermitian operators; Commuting operators and uncertainty principle(x & p; E & t); Schrodinger wave equation for a particle in one dimensional box; Evaluation of average position, average momentum and determination of uncertainty in position and momentum and hence Heisenberg’s uncertainty principle; Pictorial representation of the wave equation of a particle in one dimensional box and its influence on the kinetic energy of the particle in each successive quantum level; Lowest energy of the particle. Chapter 2. Thermodynamics – I: Brief resume of first and second Law of thermodynamics; Entropy changes in reversible and irreversible processes; Variation of entropy with temperature, pressure and volume; Entropy concept as a measure of unavailable energy and criteria for the spontaneity of reaction; Free energy, enthalpy functions and their significance, criteria for spontaneity of a process; Partial molar quantities (free energy, volume, heat concept); Gibb’s-Duhem equation. Chapter 3. Chemical Dynamics – I: Effect of temperature on reaction rates; Rate law for opposing reactions of Ist order and IInd order; Rate law for consecutive & parallel reactions of Ist order reactions; Collision theory of reaction rates and its limitations; Steric factor; Activated complex theory; Ionic reactions: single and double sphere models; Influence of solvent and ionic strength; The comparison of collision and activated complex theory. Chapter 4. Electrochemistry – I: Ion-Ion Interactions: The Debye-Huckel theory of ion- ion interactions; Potential and excess charge density as a function of distance from the central ion; Debye Huckel reciprocal length; Ionic cloud and its contribution to the total potential; Debye - Huckel limiting law of activity coefficients and its limitations; Ion-size effect on potential; Ion-size parameter and the theoretical mean-activity coefficient in the case of ionic clouds with finite-sized ions; Debye - Huckel-Onsager treatment for aqueous solutions and its limitations; Debye-Huckel-Onsager theory for non-aqueous solutions; The solvent effect on the mobality at infinite dilution; Equivalent conductivity (Λ) vs. concentration c 1/2 as a function of the solvent; Effect of ion association upon conductivity (Debye- Huckel - Bjerrum equation). Chapter 5. Quantum Mechanics – II: Schrodinger wave equation for a particle in a three dimensional box; The concept of degeneracy among energy levels for a particle in three dimensional box; Schrodinger wave equation for a linear harmonic oscillator & its solution by polynomial method; Zero point energy of a particle possessing harmonic motion and its consequence; Schrodinger wave equation for three dimensional Rigid rotator; Energy of rigid rotator; Space quantization; Schrodinger wave equation for hydrogen atom, separation of variable in polar spherical coordinates and its solution; Principle, azimuthal and magnetic quantum numbers and the magnitude of their values; Probability distribution function; Radial distribution function; Shape of atomic orbitals (s,p & d). Chapter 6. Thermodynamics – II: Classius-Clayperon equation; Law of mass action and its thermodynamic derivation; Third law of thermodynamics (Nernest heat theorem, determination of absolute entropy, unattainability of absolute zero) and its limitation; Phase diagram for two completely miscible components systems; Eutectic systems, Calculation of eutectic point; Systems forming solid compounds Ax By with congruent and incongruent melting points; Phase diagram and thermodynamic treatment of solid solutions. Chapter 7. Chemical Dynamics – II: Chain reactions: hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane; Photochemical reactions (hydrogen - bromine & hydrogen -chlorine reactions); General treatment of chain reactions (ortho-para hydrogen conversion and hydrogen - bromine reactions); Apparent activation energy of chain reactions, Chain length; Rice-Herzfeld mechanism of organic molecules decomposition(acetaldehyde); Branching chain reactions and explosions ( H2-O2 reaction); Kinetics of (one intermediate) enzymatic reaction : Michaelis-Menton treatment; Evaluation of Michaelis 's constant for enzyme-substrate binding by Lineweaver-Burk plot and Eadie-Hofstae methods; Competitive and non-competitive inhibition. Chapter 8. Electrochemistry – II: Ion Transport in Solutions: Ionic movement under the influence of an electric field; Mobility of ions; Ionic drift velocity and its relation with current density; Einstein relation between the absolute mobility and diffusion coefficient; The Stokes- Einstein relation; The Nernst -Einstein equation; Walden’s rule; The Rate-process approach to ionic migration; The Rate process equation for equivalent conductivity; Total driving force for ionic transport, Nernst - Planck Flux equation; Ionic drift and diffusion potential; the Onsager phenomenological equations; The basic equation for the diffusion; Planck-Henderson equation for the diffusion potential.
Book Synopsis Compression Machinery for Oil and Gas by : Klaus Brun
Download or read book Compression Machinery for Oil and Gas written by Klaus Brun and published by Gulf Professional Publishing. This book was released on 2018-11-30 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compression Machinery for Oil and Gas is the go-to source for all oil and gas compressors across the industry spectrum. Covering multiple topics from start to finish, this reference gives a complete guide to technology developments and their applications and implementation, including research trends. Including information on relevant standards and developments in subsea and downhole compression, this book aids engineers with a handy, single resource that will help them stay up-to-date on the compressors needed for today's oil and gas applications. - Provides an overview of the latest technology, along with a detailed discussion of engineering - Delivers on the efficiency, range and limit estimations for machines - Pulls together multiple contributors to balance content from both academics and corporate research
Book Synopsis 10th International Conference on Vibrations in Rotating Machinery by : Institution of Mechanical Engineers
Download or read book 10th International Conference on Vibrations in Rotating Machinery written by Institution of Mechanical Engineers and published by Elsevier. This book was released on 2012-09-11 with total page 847 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the papers from the 10th International Conference on Vibrations in Rotating Machinery. This conference, first held in 1976, has defined and redefined the state-of-the-art in the many aspects of vibration encountered in rotating machinery. Distinguished by an excellent mix of industrial and academic participation achieved, these papers present the latest methods of theoretical, experimental and computational rotordynamics, alongside the current issues of concern in the further development of rotating machines. Topics are aimed at propelling forward the standards of excellence in the design and operation of rotating machines. - Presents latest methods of theoretical, experimental and computational rotordynamics - Covers current issues of concern in the further development of rotating machines