Review and Experimental Studies to Evaluate the Impact of Salinity and Wettability on Oil Recovery Efficiency

Download Review and Experimental Studies to Evaluate the Impact of Salinity and Wettability on Oil Recovery Efficiency PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 328 pages
Book Rating : 4.:/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Review and Experimental Studies to Evaluate the Impact of Salinity and Wettability on Oil Recovery Efficiency by : Chinedu C. Agbalaka

Download or read book Review and Experimental Studies to Evaluate the Impact of Salinity and Wettability on Oil Recovery Efficiency written by Chinedu C. Agbalaka and published by . This book was released on 2006 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Oil recovery efficiency is influenced by a myriad of interacting variables such as pore geometry, wettability, rock mineralogy, brine salinity, oil composition, etc. Reservoir wettability is known to have very significant influence on pore scale displacement and hence is a strong determinant of the final residual oil saturation. Recent studies have indicated the improved oil recovery potential of low salinity brine injection. Though the reason for this reported increase is still unclear, it is speculated that it may be due to wettability changes. In this work, coreflood studies were carried out to determine the recovery benefits of low salinity waterflood over high salinity waterflood and the role of wettability in any observed recovery benefit. Two sets of coreflood experiments were conducted; the first set examined the EOR potential of low salinity floods in tertiary oil recovery processes while the second set examined the secondary oil recovery potential of low salinity floods. Changes in residual oil saturation with variation in wettability and brine salinity were monitored. All the coreflood tests consistently showed an increase in produced oil and water-wetness with decrease in brine salinity and increase in brine temperature"--Leaf iii.

An In-situ Experimental Investigation of the Interrelationship Between Wettability and Oil Recovery During Low-salinity Waterflooding

Download An In-situ Experimental Investigation of the Interrelationship Between Wettability and Oil Recovery During Low-salinity Waterflooding PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 184 pages
Book Rating : 4.6/5 (624 download)

DOWNLOAD NOW!


Book Synopsis An In-situ Experimental Investigation of the Interrelationship Between Wettability and Oil Recovery During Low-salinity Waterflooding by : Yun Xie

Download or read book An In-situ Experimental Investigation of the Interrelationship Between Wettability and Oil Recovery During Low-salinity Waterflooding written by Yun Xie and published by . This book was released on 2020 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wettability reversal during the displacement processes encountered in hydrocarbon reservoirs has gained significant attention in recent years owing to its critical role in the success/failure of water-based enhanced oil recovery (EOR) schemes. Regardless of different designations used for these technologies, e.g., low-salinity waterflooding (LSWF), smart water injection, or engineered water injection, manipulating the ionic compositions and concentrations of the aqueous solutions to trigger the wettability reversal process is the shared objective. Despite the encouraging application potentials, the mechanisms that govern the wettability reversal and how it affects the displacement efficiency are still poorly understood, particularly in oil-wet carbonates. Therefore, in this work, multi-scale experiments were carefully designed and conducted to probe the impacts of rock wettability and its reversal, induced through brine chemistry manipulation, on oil recovery performance. We first investigated the adsorption-controlled calcite substrate wettability using a HPHT interfacial tension/contact angle measurement apparatus. The results were then further examined in natural rock samples through miniature core-flooding experiments. A high-resolution X-ray micro-CT scanner was used with a multiphase fluid delivery system to conduct the flow tests. Prior to each waterflooding experiment, an equilibrium wettability state was established in the core sample. This study reveals that wettability reversal, caused by adsorption/desorption of the polar components present in crude oil, is the principal factor responsible for the changes in oil recovery trend during LSWF. Dynamic contact angles measured on calcite substrates indicated that adsorption of the polar components controlled the surface wettability. Higher concentrations of Ca2+/SO42− can facilitate/obstruct the adsorption of polar components thus increase/decrease the dynamic contact angle values. A similar wetting strength sensitivity to the changes in aqueous phase composition was observed in miniature core samples when the in-situ contact angle measurement technique was used to characterize wettability. Using a dynamic aging process, weakly to strongly oil-wet conditions were established in samples aged with high-salinity brine, whereas low-salinity brine or brine with a higher concentration of sulfate ions created a more heterogeneous wettability. Different equilibrium wetting conditions thus produced various oil recovery trends. Moreover, two distinct displacement mechanisms, i.e., piston-like invasion and wetting oil layer drainage, were identified, through image analysis, to play key roles in affecting the recovery trends. Wettability reversal improved the efficiency of water-displacing-oil events by enhancing the frequency/strength of both mechanisms, while their relative contributions varied from one wettability case to another. These findings provide in-situ experimental evidence that demonstrates a direct link between the composition of the engineering injection brine and enhanced sweep efficiency at the pore scale in oil-wet carbonate samples.

An experimental and numerical study of low salinity effects on the oil recovery of carbonate limestone samples

Download An experimental and numerical study of low salinity effects on the oil recovery of carbonate limestone samples PDF Online Free

Author :
Publisher : Cuvillier Verlag
ISBN 13 : 3736961766
Total Pages : 254 pages
Book Rating : 4.7/5 (369 download)

DOWNLOAD NOW!


Book Synopsis An experimental and numerical study of low salinity effects on the oil recovery of carbonate limestone samples by : Felix Feldmann

Download or read book An experimental and numerical study of low salinity effects on the oil recovery of carbonate limestone samples written by Felix Feldmann and published by Cuvillier Verlag. This book was released on 2020-03-02 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-salinity waterflooding is a relatively simple and cheap Enhanced oil recovery technique in which the salinity of the injected water is optimized (by desalination and/or modification) to improve oil recovery over conventional waterflooding. The presented study combines spontaneous imbibition, centrifuge method, unsteady state coreflooding and zeta potential experiments to investigate low-salinity effects in carbonate limestones samples. Compared to Formation-water and Sea-water, Diluted-sea-water caused the significantly highest spontaneous oil recovery. Moreover, the imbibition capillary pressure curves are characterized by an increasing water-wetting tendency and a residual oil saturation reduction, as the salinity of the imbibing brines decreases in comparison to Formation-water. The unsteady state corefloodings resulted in the highest secondary oil recovery when Diluted-sea-water was used as injection water. Based on the open-source C++ simulator Dumux, the study developed a numerical centrifuge and coreflooding model to history match the experimental data. The numerically derived capillary pressure and relative permeability data confirm a correlation between the system’s salinity, wettability, oil recovery and residual oil saturation.

Core Analysis

Download Core Analysis PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444636579
Total Pages : 853 pages
Book Rating : 4.4/5 (446 download)

DOWNLOAD NOW!


Book Synopsis Core Analysis by : Colin McPhee

Download or read book Core Analysis written by Colin McPhee and published by Elsevier. This book was released on 2015-12-10 with total page 853 pages. Available in PDF, EPUB and Kindle. Book excerpt: Core Analysis: A Best Practice Guide is a practical guide to the design of core analysis programs. Written to address the need for an updated set of recommended practices covering special core analysis and geomechanics tests, the book also provides unique insights into data quality control diagnosis and data utilization in reservoir models. The book's best practices and procedures benefit petrophysicists, geoscientists, reservoir engineers, and production engineers, who will find useful information on core data in reservoir static and dynamic models. It provides a solid understanding of the core analysis procedures and methods used by commercial laboratories, the details of lab data reporting required to create quality control tests, and the diagnostic plots and protocols that can be used to identify suspect or erroneous data. Provides a practical overview of core analysis, from coring at the well site to laboratory data acquisition and interpretation Defines current best practice in core analysis preparation and test procedures, and the diagnostic tools used to quality control core data Provides essential information on design of core analysis programs and to judge the quality and reliability of core analysis data ultimately used in reservoir evaluation Of specific interest to those working in core analysis, porosity, relative permeability, and geomechanics

New Advances and Challenges in Shale Oil Exploration

Download New Advances and Challenges in Shale Oil Exploration PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889767019
Total Pages : 175 pages
Book Rating : 4.8/5 (897 download)

DOWNLOAD NOW!


Book Synopsis New Advances and Challenges in Shale Oil Exploration by : Min Wang

Download or read book New Advances and Challenges in Shale Oil Exploration written by Min Wang and published by Frontiers Media SA. This book was released on 2022-08-04 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Chemical Enhanced Oil Recovery

Download Chemical Enhanced Oil Recovery PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110640430
Total Pages : 277 pages
Book Rating : 4.1/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Chemical Enhanced Oil Recovery by : Patrizio Raffa

Download or read book Chemical Enhanced Oil Recovery written by Patrizio Raffa and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-07-22 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at presenting, describing, and summarizing the latest advances in polymer flooding regarding the chemical synthesis of the EOR agents and the numerical simulation of compositional models in porous media, including a description of the possible applications of nanotechnology acting as a booster of traditional chemical EOR processes. A large part of the world economy depends nowadays on non-renewable energy sources, most of them of fossil origin. Though the search for and the development of newer, greener, and more sustainable sources have been going on for the last decades, humanity is still fossil-fuel dependent. Primary and secondary oil recovery techniques merely produce up to a half of the Original Oil In Place. Enhanced Oil Recovery (EOR) processes are aimed at further increasing this value. Among these, chemical EOR techniques (including polymer flooding) present a great potential in low- and medium-viscosity oilfields. • Describes recent advances in chemical enhanced oil recovery. • Contains detailed description of polymer flooding and nanotechnology as promising boosting tools for EOR. • Includes both experimental and theoretical studies. About the Authors Patrizio Raffa is Assistant Professor at the University of Groningen. He focuses on design and synthesis of new polymeric materials optimized for industrial applications such as EOR, coatings and smart materials. He (co)authored about 40 articles in peer reviewed journals. Pablo Druetta works as lecturer at the University of Groningen (RUG) and as engineering consultant. He received his Ph.D. from RUG in 2018 and has been teaching at a graduate level for 15 years. His research focus lies on computational fluid dynamics (CFD).

Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs

Download Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0128136057
Total Pages : 179 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs by : Emad Walid Al Shalabi

Download or read book Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs written by Emad Walid Al Shalabi and published by Gulf Professional Publishing. This book was released on 2017-06-14 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs provides a first of its kind review of the low salinity and engineered water injection (LSWI/EWI) techniques for today’s more complex enhanced oil recovery methods. Reservoir engineers today are challenged in the design and physical mechanisms behind low salinity injection projects, and to date, the research is currently only located in numerous journal locations. This reference helps readers overcome these challenging issues with explanations on models, experiments, mechanism analysis, and field applications involved in low salinity and engineered water. Covering significant laboratory, numerical, and field studies, lessons learned are also highlighted along with key areas for future research in this fast-growing area of the oil and gas industry. After an introduction to its techniques, the initial chapters review the main experimental findings and explore the mechanisms behind the impact of LSWI/EWI on oil recovery. The book then moves on to the critical area of modeling and simulation, discusses the geochemistry of LSWI/EWI processes, and applications of LSWI/EWI techniques in the field, including the authors’ own recommendations based on their extensive experience. It is an essential reference for professional reservoir and field engineers, researchers and students working on LSWI/EWI and seeking to apply these methods for increased oil recovery. Teaches users how to understand the various mechanisms contributing to incremental oil recovery using low salinity and engineering water injection (LSWI/EWI) in sandstones and carbonates Balances guidance between designing laboratory experiments, to applying the LSWI/EWI techniques at both pilot-scale and full-field-scale for real-world operations Presents state-of-the-art approaches to simulation and modeling of LSWI/EWI

Mechanistic Studies for Improved Understanding of Low Salinity Waterflooding Based Enhanced Oil Recovery and Potential Application to the Alaskan North Slope Reservoirs

Download Mechanistic Studies for Improved Understanding of Low Salinity Waterflooding Based Enhanced Oil Recovery and Potential Application to the Alaskan North Slope Reservoirs PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 234 pages
Book Rating : 4.:/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Mechanistic Studies for Improved Understanding of Low Salinity Waterflooding Based Enhanced Oil Recovery and Potential Application to the Alaskan North Slope Reservoirs by : Mukul N. Chavan

Download or read book Mechanistic Studies for Improved Understanding of Low Salinity Waterflooding Based Enhanced Oil Recovery and Potential Application to the Alaskan North Slope Reservoirs written by Mukul N. Chavan and published by . This book was released on 2015 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improvement in the recovery of oil by low or reduced salinity water has been reported by many researchers. However, a consistent mechanistic explanation behind low salinity waterflood has not yet emerged. A thorough literature review was conducted that pertains to low salinity water based enhanced oil recovery and preliminary screening criteria were proposed which may help in narrowing down the responsible mechanisms and identifying suitable candidates for low salinity waterflood. Altogether nine different variables, such as clays, oil characteristics, salinity ranges etc. were considered in developing the screening criteria. With the exception of some tests on standard Berea sandstone cores, all other experimental studies were carried out on representative Alaska North Slope (ANS) reservoir core samples and oil and brine samples. Experimental studies involved a direct visualization of the release of crude oil from the clay surface with low salinity waterflood as observed through a simple substrate type test. Amott type spontaneous displacement tests were performed to quantitatively determine the effect of low salinity water using core materials containing different types of clays. Two sets of low salinity water coreflooding experiments were conducted in the tertiary recovery mode; first using dead oil and the second using recombined oil at pseudo reservoir conditions to examine the potential in improving oil recovery. Oil recoveries were also compared with continuous injection vs slug-wise injection of low salinity water. Finally, surface level investigation was performed using an optical microscope to visually analyze the impact of low salinity water on core samples. All the experiments performed with low salinity water on Alaska North Slope (ANS) reservoir core samples consistently showed anywhere between a 3-30 % increase in oil production with the use of low salinity brine. The literature review identified wettability alteration, cation exchange capacity, clay type and clay content as some of the dominant mechanisms influencing low salinity waterflooding.

Effect of Changing Injection Water Salinity on Oil Recovery from Oil-wet Carbonate Rocks

Download Effect of Changing Injection Water Salinity on Oil Recovery from Oil-wet Carbonate Rocks PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (943 download)

DOWNLOAD NOW!


Book Synopsis Effect of Changing Injection Water Salinity on Oil Recovery from Oil-wet Carbonate Rocks by : Ugur Pakoz

Download or read book Effect of Changing Injection Water Salinity on Oil Recovery from Oil-wet Carbonate Rocks written by Ugur Pakoz and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental studies and some field applications have shown that tuning the salinity of the injected water can affect oil recovery from water flooding. Most of the available literature has dedicated efforts to investigate the effect of low salinity water injection, especially for sandstone. Further studies on carbonate rocks also proved that low salinity effect might be observed for carbonate rocks as well. The main mechanism for the improved oil recovery from low salinity water flooding has been attributed to wettability alteration. The purpose of this work is to further investigate the effect of water salinity on oil recovery from oil-wet carbonate rocks. A series of core flood experiments were performed in the laboratory to measure and compare oil recovery from increasing and decreasing salinity floods at room temperature. Selected carbonate cores were aged with synthetic oil at 100 oC for 12 days prior to core flooding. Contact angles were measured on pre-aged and post-aged core slices to validate aging procedure and oil-wet conditions. Both, increasing and decreasing salinity floods showed measurable recovery gains in the secondary and tertiary modes compared with initial floods. In case of increasing water salinity, 1.3% and 0.6% additional recoveries were obtained while in the case of decreasing water salinity, additional recoveries were 0.6% and 0.7%, all in terms of original oil in place in the core. Results suggest that the system disturbance caused by the change in injection water salinity may have a greater influence on oil recovery than wettability alteration under the laboratory conditions tested.

An Experimental Study of the Impact of Injection Water Composition on Oil Recovery from Carbonate Rocks

Download An Experimental Study of the Impact of Injection Water Composition on Oil Recovery from Carbonate Rocks PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (915 download)

DOWNLOAD NOW!


Book Synopsis An Experimental Study of the Impact of Injection Water Composition on Oil Recovery from Carbonate Rocks by : Mohammed J. Alshakhs

Download or read book An Experimental Study of the Impact of Injection Water Composition on Oil Recovery from Carbonate Rocks written by Mohammed J. Alshakhs and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Evidence from laboratory studies and field tests suggests that implementing certain modifications to the ionic composition of the injection brine leads to greater oil recovery from sandstone rocks. More recent studies indicate that salinity and ionic composition impact oil recovery from carbonate rocks. The mechanisms that take place and techniques of altering the salinity may be different from those experienced in clastic systems. This work examines experimentally the factors that influence oil recovery from carbonate rocks when the salinity is altered. It also investigates mechanisms that lead to greater oil recovery. A series of forced imbibition experiments were conducted at different total salinity and ionic composition using reservoir limestone cores and crude-oil. Brines of different salinities were injected sequentially into a core with realistic initial oil and water saturation. Additional incremental oil recovery of 4.4-6.4% of the original oil in place (OOIP) was observed, during the tertiary stage, when the injection seawater, that has a salinity of 55 kppm, was replaced by a new brine (MgSO4) of similar total salinity (45 kppm) and rich in Mg2+ and SO42- ions. The effect of reducing the total salinity was evaluated using outcrop limestone cores and another crude- oil. An incremental oil recovery increase of 3.2-6.5% was observed when twice-diluted seawater (29 kppm) was injected during the tertiary stage following seawater injection. Direct measurements of crude-oil contact-angles on smooth calcite surfaces suggest that the release of oil is caused by a wettability shift toward water wetness. The static water contact-angle was reduced from 92.9 to 58.7 when the brine was switched from seawater to MgSO4 solution of similar salinity. Similar reduction was observed when measurements were conducted using the fluids of the second system. The static water contact-angle was reduced from 70.1 to 58.9 when the brine was switched from seawater to twice-diluted seawater. The contribution of each component of the rock/brine/oil system to the wettability was evaluated by measuring zeta potential of water/oil and water/solid interfaces. DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory of surface forces uses the measurements to predict disjoining pressure and contact-angle. The results rationalized observations of recovery and crude-oil adhesion to solids. They also show that Mg2+ ions play a key role in the wettability alteration process when MgSO4 brine was used and no significant contribution was observed for SO42- ions. For tests that used the twice diluted seawater, the wettability alteration was attributed to the additional Ca2+ ions that added to the brine from the rock dissolution. Conventional fluid flow simulation was able to predict the additional oil recovery that was observed in the core-flood experiments. The input relative permeabilities for each brine were generated using pore network modeling that simulated flow in a carbonate system under different wettability conditions.

LABORATORY INVESTIGATION OF OIL-COMPOSITION AFFECTING THE SUCCESS OF LOW-SALINITY WATERFLOODING IN OIL-WET CARBONATE ROCKS.

Download LABORATORY INVESTIGATION OF OIL-COMPOSITION AFFECTING THE SUCCESS OF LOW-SALINITY WATERFLOODING IN OIL-WET CARBONATE ROCKS. PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (15 download)

DOWNLOAD NOW!


Book Synopsis LABORATORY INVESTIGATION OF OIL-COMPOSITION AFFECTING THE SUCCESS OF LOW-SALINITY WATERFLOODING IN OIL-WET CARBONATE ROCKS. by : Gregory Kojadinovich

Download or read book LABORATORY INVESTIGATION OF OIL-COMPOSITION AFFECTING THE SUCCESS OF LOW-SALINITY WATERFLOODING IN OIL-WET CARBONATE ROCKS. written by Gregory Kojadinovich and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Improved oil recovery via wettability alteration by tuning the ionic composition of the injection water has been thoroughly researched in recent years. It has been well documented that seawater can increase the water wetness of chalk at high temperature. Forced displacement and spontaneous imbibition experiments have attributed the wettability alteration to interactions between active ions in the brine, Ca2+, Mg2+, and SO42-, the rock surface, and the oil phase. It has been suggested that the adsorption of SO42- onto the rock surface causes the bond between adsorbed carboxylic material in the crude oil and the rock surface to deteriorate which causes the release of the crude oil. Reduction in ionic strength of the injection water has also been proposed to trigger the effect of wettability alteration in carbonates. Although the numerous experiments devoted to understanding the mechanisms governing the low salinity effect in the past two decades, there has been no consensus about the dominant mechanisms driving wettability alteration. The purpose of this research is to improve the understanding of how reduced ionic strength and potentially determining ions (PDIs) contribute to oil recovery, as well as provide a direct comparison of their oil recovery performance for a synthetic oil versus crude oil during waterflooding. For this, a series of waterflood experiments were conducted in the laboratory at 90 C in Indiana limestone core plugs. Chemically tuned brines derived from seawater were used in secondary and tertiary recovery modes to displace synthetic oil. A waterflood with formation brine was also conducted as an experimental baseline to assess the advantages of low-salinity waterflooding over typical secondary recovery methods. Effluent analysis was conducted to evaluate the surface interactions occurring between the brine and rock surface. Gas chromatography-mass spectroscopy was performed to compare the chemical make-up of the synthetic and crude oil. Oil recovery curves from this study indicate that there was no benefit after increasing the concentration of PDIs in injection water compared to seawater (SW). However, the use of seawater and all chemically tuned brines derived from seawater resulted in an average 6.47% increase in oil recovery post water breakthrough, relative to the formation brine waterflood. The success of wettability alteration leading to improved oil recovery in carbonates has been noted as a strong function of the oil composition.

A Mechanism of Improved Oil Recovery by Low-Salinity Waterflooding in Sandstone Rock

Download A Mechanism of Improved Oil Recovery by Low-Salinity Waterflooding in Sandstone Rock PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (868 download)

DOWNLOAD NOW!


Book Synopsis A Mechanism of Improved Oil Recovery by Low-Salinity Waterflooding in Sandstone Rock by : Ramez Masoud Azmy Nasralla

Download or read book A Mechanism of Improved Oil Recovery by Low-Salinity Waterflooding in Sandstone Rock written by Ramez Masoud Azmy Nasralla and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Injection of low-salinity water showed high potentials in improving oil recovery when compared to high-salinity water. However, the optimum water salinity and conditions are uncertain, due to the lack of understanding the mechanisms of fluid-rock interactions. The main objective of this study is to examine the potential and efficiency of low-salinity water in secondary and tertiary oil recovery for sandstone reservoirs. Similarly, this study aims to help in understanding the dominant mechanisms that aid in improving oil recovery by low-salinity waterflooding. Furthermore, the impact of cation type in injected brines on oil recovery was investigated. Coreflood experiments were conducted to determine the effect of water salinity and chemistry on oil recovery in the secondary and tertiary modes. The contact angle technique was used to study the impact of water salinity and composition on rock wettability. Moreover, the zeta potential at oil/brine and brine/rock interfaces was measured to explain the mechanism causing rock wettability alteration and improving oil recovery. Deionized water and different brines (from 500 to 174,000 mg/l), as well as single cation solutions were tested. Two types of crude oil with different properties and composition were used. Berea sandstone cores were utilized in the coreflood experiments. Coreflood tests indicated that injection of deionized water in the secondary mode resulted in significant oil recovery, up to 22% improvement, compared to seawater flooding. However, no more oil was recovered in the tertiary mode. In addition, injection of NaCl solution increased the oil recovery compared to injection of CaCl2 or MgCl2 at the same concentration. Contact angle results demonstrated that low-salinity water has an impact on the rock wettability; the more reduction in water salinity, the more a water-wet rock surface is produced. In addition, NaCl solutions made the rock more water-wet compared to CaCl2 or MgCl2 at the same concentration. Low-salinity water and NaCl solutions showed a highly negative charge at rock/brine and oil/brine interfaces by zeta potential measurements, which results in greater repulsive forces between the oil and rock surface. This leads to double-layer expansion and water-wet systems. These results demonstrate that the double-layer expansion is a primary mechanism of improving oil recovery when water chemical composition is manipulated. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/149468

Modern Chemical Enhanced Oil Recovery

Download Modern Chemical Enhanced Oil Recovery PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0080961630
Total Pages : 648 pages
Book Rating : 4.0/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Modern Chemical Enhanced Oil Recovery by : James J.Sheng

Download or read book Modern Chemical Enhanced Oil Recovery written by James J.Sheng and published by Gulf Professional Publishing. This book was released on 2010-11-25 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary recovery, the natural pressure of the reservoir or gravity drive oil into the wellbore, combined with artificial lift techniques (such as pumps) which bring the oil to the surface. But only about 10 percent of a reservoir's original oil in place is typically produced during primary recovery. Secondary recovery techniques to the field's productive life generally by injecting water or gas to displace oil and drive it to a production wellbore, resulting in the recovery of 20 to 40 percent of the original oil in place. In the past two decades, major oil companies and research organizations have conducted extensive theoretical and laboratory EOR (enhanced oil recovery) researches, to include validating pilot and field trials relevant to much needed domestic commercial application, while western countries had terminated such endeavours almost completely due to low oil prices. In recent years, oil demand has soared and now these operations have become more desirable. This book is about the recent developments in the area as well as the technology for enhancing oil recovery. The book provides important case studies related to over one hundred EOR pilot and field applications in a variety of oil fields. These case studies focus on practical problems, underlying theoretical and modelling methods, operational parameters (e.g., injected chemical concentration, slug sizes, flooding schemes and well spacing), solutions and sensitivity studies, and performance optimization strategies. The book strikes an ideal balance between theory and practice, and would be invaluable to academicians and oil company practitioners alike. Updated chemical EOR fundamentals providing clear picture of fundamental concepts Practical cases with problems and solutions providing practical analogues and experiences Actual data regarding ranges of operation parameters providing initial design parameters Step-by-step calculation examples providing practical engineers with convenient procedures

Laboratory Investigation of Mechanisms Governing Low-salinity Waterflooding in Oil-wet Carbonate Reservoirs

Download Laboratory Investigation of Mechanisms Governing Low-salinity Waterflooding in Oil-wet Carbonate Reservoirs PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Laboratory Investigation of Mechanisms Governing Low-salinity Waterflooding in Oil-wet Carbonate Reservoirs by : Gregory Kojadinovich

Download or read book Laboratory Investigation of Mechanisms Governing Low-salinity Waterflooding in Oil-wet Carbonate Reservoirs written by Gregory Kojadinovich and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Improved oil recovery via wettability alteration by tuning the ionic composition of the injection water has been thoroughly researched in recent years. It has been well documented that seawater can increase the water wetness of chalk at high temperature. Forced displacement and spontaneous imbibition experiments have attributed the wettability alteration to interactions between active ions in the brine, Ca2+, Mg2+, and SO42-, the rock surface, and the oil phase. It has been suggested that the adsorption of SO42- onto the rock surface causes the bond between adsorbed carboxylic material in the crude oil and the rock surface to deteriorate which causes the release of the crude oil. Reduction in ionic strength of the injection water has also been proposed to trigger the effect of wettability alteration in carbonates. Although the numerous experiments devoted to understanding the mechanisms governing the low salinity effect in the past two decades, there has been no consensus about the dominant mechanisms driving wettability alteration. The purpose of this research is to improve the understanding of how reduced ionic strength and potentially determining ions (PDIs) contribute to oil recovery, as well as provide a direct comparison of their oil recovery performance for a synthetic oil versus crude oil during waterflooding. For this, a series of waterflood experiments were conducted in the laboratory at 90 C in Indiana limestone core plugs. Chemically tuned brines derived from seawater were used in secondary and tertiary recovery modes to displace synthetic oil. A waterflood with formation brine was also conducted as an experimental baseline to assess the advantages of low-salinity waterflooding over typical secondary recovery methods. Effluent analysis was conducted to evaluate the surface interactions occurring between the brine and rock surface. Gas chromatography-mass spectroscopy was performed to compare the chemical make-up of the synthetic and crude oil. Oil recovery curves from this study indicate that there was no benefit afterincreasing the concentration of PDIs in injection water compared to seawater (SW). However, the use of seawater and all chemically tuned brines derived from seawater resulted in an average 6.47% increase in oil recovery post water breakthrough, relative to the formation brine waterflood. The success of wettability alteration leading to improved oil recovery in carbonates has been noted as a strong function of the oil composition.

Surfactants in Upstream E&P

Download Surfactants in Upstream E&P PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030700267
Total Pages : 458 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Surfactants in Upstream E&P by : Theis Solling

Download or read book Surfactants in Upstream E&P written by Theis Solling and published by Springer Nature. This book was released on 2021-06-19 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book explores the use of surfactants in upstream exploration and production (E&P). It provides a molecular, mechanistic and application-based approach to the topic, utilising contributions from the leading researchers in the field of organic surfactant chemistry and surfactant chemistry for upstream E&P. The book covers a wide range of problems in enhanced oil recovery and surfactant chemistry which have a large importance in drilling, fracking, hydrate inhibition and conformance. It begins by discussing the fundamentals of surfactants and their synthesis. It then moves on to present their applicability to a variety of situations such as gas injections, shale swelling inhibition, and acid stimulation. This book presents research in an evolving field, making it interesting to academics, postgraduate students, and experts within the field of oil and gas.

Enhanced Oil Recovery Processes

Download Enhanced Oil Recovery Processes PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 1789851076
Total Pages : 162 pages
Book Rating : 4.7/5 (898 download)

DOWNLOAD NOW!


Book Synopsis Enhanced Oil Recovery Processes by : Ariffin Samsuri

Download or read book Enhanced Oil Recovery Processes written by Ariffin Samsuri and published by BoD – Books on Demand. This book was released on 2019-12-18 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concerned with production decline, shortages of new oil reserves, and increasing world energy demand, the oil sector continues to search for economic and efficient techniques to enhance their oil recovery from the existing oil field using several enhanced oil recovery techniques (EOR)methods. Despite its highefficiency, widely acclaimed potentials, and limitations, the Low Salinity Water Flooding (LSWF), hybrid, and nanotechnology applications have gained vast interest with promising future to increase ultimate oil recovery, tackle operational challenges, reduce environmental damage, and allow the highest feasible recoveries with lower production costs. This synergistic combination has opened new routes for novel materials with fascinating properties. This book aims to provide an overview of EOR technology such as LSWF, hybrid, and nanotechnology applications in EOR processes.

Microbial Enhanced Oil Recovery

Download Microbial Enhanced Oil Recovery PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811654654
Total Pages : 272 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Microbial Enhanced Oil Recovery by : Lalit Pandey

Download or read book Microbial Enhanced Oil Recovery written by Lalit Pandey and published by Springer Nature. This book was released on 2021-10-21 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the fundamentals of the reservoir and interfacial engineering. The book systematically starts with the basics of primary, secondary and tertiary (enhanced) oil recovery and emphasizes on the theory of microbial-enhanced oil recovery (MEOR) and its potential toward recovery of oil in place. Different approaches of MEOR such as in-situ, ex-situ, and integration of chemical- and microbial-enhanced oil recovery (EOR) are discussed in detail. This book highlights the link between the effectiveness of MEOR and the local reservoir conditions, crude oil characteristics, and indigenous microbial community. The latest implementations of MEOR across the globe are highlighted as case studies to outline the potential as well as the scope of MEOR. Given the topics covered, this book will be useful for professionals and researchers working in the areas of petroleum science and engineering, chemical engineering, biotechnology, bioengineering, and other related fields.