Big Data Application in Power Systems

Download Big Data Application in Power Systems PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128119691
Total Pages : 482 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Big Data Application in Power Systems by : Reza Arghandeh

Download or read book Big Data Application in Power Systems written by Reza Arghandeh and published by Elsevier. This book was released on 2017-11-27 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data Application in Power Systems brings together experts from academia, industry and regulatory agencies who share their understanding and discuss the big data analytics applications for power systems diagnostics, operation and control. Recent developments in monitoring systems and sensor networks dramatically increase the variety, volume and velocity of measurement data in electricity transmission and distribution level. The book focuses on rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches to process high dimensional, heterogeneous and spatiotemporal data. The book chapters discuss challenges, opportunities, success stories and pathways for utilizing big data value in smart grids. - Provides expert analysis of the latest developments by global authorities - Contains detailed references for further reading and extended research - Provides additional cross-disciplinary lessons learned from broad disciplines such as statistics, computer science and bioinformatics - Focuses on rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches to process high dimensional, heterogeneous and spatiotemporal data

Imputation Methods for Missing Hydrometeorological Data Estimation

Download Imputation Methods for Missing Hydrometeorological Data Estimation PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031609468
Total Pages : 532 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Imputation Methods for Missing Hydrometeorological Data Estimation by : Ramesh S. V. Teegavarapu

Download or read book Imputation Methods for Missing Hydrometeorological Data Estimation written by Ramesh S. V. Teegavarapu and published by Springer Nature. This book was released on with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Adversarial Machine Learning

Download Adversarial Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030997723
Total Pages : 316 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Adversarial Machine Learning by : Aneesh Sreevallabh Chivukula

Download or read book Adversarial Machine Learning written by Aneesh Sreevallabh Chivukula and published by Springer Nature. This book was released on 2023-03-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantification of the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.

Encyclopedia of Data Warehousing and Mining, Second Edition

Download Encyclopedia of Data Warehousing and Mining, Second Edition PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1605660116
Total Pages : 2542 pages
Book Rating : 4.6/5 (56 download)

DOWNLOAD NOW!


Book Synopsis Encyclopedia of Data Warehousing and Mining, Second Edition by : Wang, John

Download or read book Encyclopedia of Data Warehousing and Mining, Second Edition written by Wang, John and published by IGI Global. This book was released on 2008-08-31 with total page 2542 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are more than one billion documents on the Web, with the count continually rising at a pace of over one million new documents per day. As information increases, the motivation and interest in data warehousing and mining research and practice remains high in organizational interest. The Encyclopedia of Data Warehousing and Mining, Second Edition, offers thorough exposure to the issues of importance in the rapidly changing field of data warehousing and mining. This essential reference source informs decision makers, problem solvers, and data mining specialists in business, academia, government, and other settings with over 300 entries on theories, methodologies, functionalities, and applications.

Dataset Shift in Machine Learning

Download Dataset Shift in Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 026254587X
Total Pages : 246 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Dataset Shift in Machine Learning by : Joaquin Quinonero-Candela

Download or read book Dataset Shift in Machine Learning written by Joaquin Quinonero-Candela and published by MIT Press. This book was released on 2022-06-07 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of recent efforts in the machine learning community to deal with dataset and covariate shift, which occurs when test and training inputs and outputs have different distributions. Dataset shift is a common problem in predictive modeling that occurs when the joint distribution of inputs and outputs differs between training and test stages. Covariate shift, a particular case of dataset shift, occurs when only the input distribution changes. Dataset shift is present in most practical applications, for reasons ranging from the bias introduced by experimental design to the irreproducibility of the testing conditions at training time. (An example is -email spam filtering, which may fail to recognize spam that differs in form from the spam the automatic filter has been built on.) Despite this, and despite the attention given to the apparently similar problems of semi-supervised learning and active learning, dataset shift has received relatively little attention in the machine learning community until recently. This volume offers an overview of current efforts to deal with dataset and covariate shift. The chapters offer a mathematical and philosophical introduction to the problem, place dataset shift in relationship to transfer learning, transduction, local learning, active learning, and semi-supervised learning, provide theoretical views of dataset and covariate shift (including decision theoretic and Bayesian perspectives), and present algorithms for covariate shift. Contributors: Shai Ben-David, Steffen Bickel, Karsten Borgwardt, Michael Brückner, David Corfield, Amir Globerson, Arthur Gretton, Lars Kai Hansen, Matthias Hein, Jiayuan Huang, Choon Hui Teo, Takafumi Kanamori, Klaus-Robert Müller, Sam Roweis, Neil Rubens, Tobias Scheffer, Marcel Schmittfull, Bernhard Schölkopf Hidetoshi Shimodaira, Alex Smola, Amos Storkey, Masashi Sugiyama

Optimization in Science and Engineering

Download Optimization in Science and Engineering PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493908081
Total Pages : 611 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Optimization in Science and Engineering by : Themistocles M. Rassias

Download or read book Optimization in Science and Engineering written by Themistocles M. Rassias and published by Springer. This book was released on 2014-05-29 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization in Science and Engineering is dedicated in honor of the 60th birthday of Distinguished Professor Panos M. Pardalos. Pardalos’s past and ongoing work has made a significant impact on several theoretical and applied areas in modern optimization. As tribute to the diversity of Dr. Pardalos’s work in Optimization, this book comprises a collection of contributions from experts in various fields of this rich and diverse area of science. Topics highlight recent developments and include: Deterministic global optimization Variational inequalities and equilibrium problems Approximation and complexity in numerical optimization Non-smooth optimization Statistical models and data mining Applications of optimization in medicine, energy systems, and complex network analysis This volume will be of great interest to graduate students, researchers, and practitioners, in the fields of optimization and engineering.

Bayesian Nonparametrics for Causal Inference and Missing Data

Download Bayesian Nonparametrics for Causal Inference and Missing Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000927717
Total Pages : 263 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Nonparametrics for Causal Inference and Missing Data by : Michael J. Daniels

Download or read book Bayesian Nonparametrics for Causal Inference and Missing Data written by Michael J. Daniels and published by CRC Press. This book was released on 2023-08-23 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Nonparametrics for Causal Inference and Missing Data provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. Unlike parametric methods, the BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification. The overall strategy is to first specify BNP models for observed data and then to specify additional uncheckable assumptions to identify estimands of interest. The book is divided into three parts. Part I develops the key concepts in causal inference and missing data and reviews relevant concepts in Bayesian inference. Part II introduces the fundamental BNP tools required to address causal inference and missing data problems. Part III shows how the BNP approach can be applied in a variety of case studies. The datasets in the case studies come from electronic health records data, survey data, cohort studies, and randomized clinical trials. Features • Thorough discussion of both BNP and its interplay with causal inference and missing data • How to use BNP and g-computation for causal inference and non-ignorable missingness • How to derive and calibrate sensitivity parameters to assess sensitivity to deviations from uncheckable causal and/or missingness assumptions • Detailed case studies illustrating the application of BNP methods to causal inference and missing data • R code and/or packages to implement BNP in causal inference and missing data problems The book is primarily aimed at researchers and graduate students from statistics and biostatistics. It will also serve as a useful practical reference for mathematically sophisticated epidemiologists and medical researchers.

Patterns, Predictions, and Actions: Foundations of Machine Learning

Download Patterns, Predictions, and Actions: Foundations of Machine Learning PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691233721
Total Pages : 321 pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Patterns, Predictions, and Actions: Foundations of Machine Learning by : Moritz Hardt

Download or read book Patterns, Predictions, and Actions: Foundations of Machine Learning written by Moritz Hardt and published by Princeton University Press. This book was released on 2022-08-23 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative, up-to-date graduate textbook on machine learning that highlights its historical context and societal impacts Patterns, Predictions, and Actions introduces graduate students to the essentials of machine learning while offering invaluable perspective on its history and social implications. Beginning with the foundations of decision making, Moritz Hardt and Benjamin Recht explain how representation, optimization, and generalization are the constituents of supervised learning. They go on to provide self-contained discussions of causality, the practice of causal inference, sequential decision making, and reinforcement learning, equipping readers with the concepts and tools they need to assess the consequences that may arise from acting on statistical decisions. Provides a modern introduction to machine learning, showing how data patterns support predictions and consequential actions Pays special attention to societal impacts and fairness in decision making Traces the development of machine learning from its origins to today Features a novel chapter on machine learning benchmarks and datasets Invites readers from all backgrounds, requiring some experience with probability, calculus, and linear algebra An essential textbook for students and a guide for researchers

Understanding Machine Learning

Download Understanding Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107057132
Total Pages : 415 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Understanding Machine Learning by : Shai Shalev-Shwartz

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Data Preprocessing in Data Mining

Download Data Preprocessing in Data Mining PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319102478
Total Pages : 327 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Data Preprocessing in Data Mining by : Salvador García

Download or read book Data Preprocessing in Data Mining written by Salvador García and published by Springer. This book was released on 2014-08-30 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data. This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.

Foundations of Machine Learning, second edition

Download Foundations of Machine Learning, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262351366
Total Pages : 505 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Machine Learning, second edition by : Mehryar Mohri

Download or read book Foundations of Machine Learning, second edition written by Mehryar Mohri and published by MIT Press. This book was released on 2018-12-25 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

Machine Learning and Knowledge Discovery in Databases

Download Machine Learning and Knowledge Discovery in Databases PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319461281
Total Pages : 850 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Knowledge Discovery in Databases by : Paolo Frasconi

Download or read book Machine Learning and Knowledge Discovery in Databases written by Paolo Frasconi and published by Springer. This book was released on 2016-09-03 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volume set LNAI 9851, LNAI 9852, and LNAI 9853 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, held in Riva del Garda, Italy, in September 2016. The 123 full papers and 16 short papers presented were carefully reviewed and selected from a total of 460 submissions. The papers presented focus on practical and real-world studies of machine learning, knowledge discovery, data mining; innovative prototype implementations or mature systems that use machine learning techniques and knowledge discovery processes in a real setting; recent advances at the frontier of machine learning and data mining with other disciplines. Part I and Part II of the proceedings contain the full papers of the contributions presented in the scientific track and abstracts of the scientific plenary talks. Part III contains the full papers of the contributions presented in the industrial track, short papers describing demonstration, the nectar papers, and the abstracts of the industrial plenary talks.

Intelligent Information Processing XII

Download Intelligent Information Processing XII PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031578082
Total Pages : 518 pages
Book Rating : 4.0/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Information Processing XII by : Zhongzhi Shi

Download or read book Intelligent Information Processing XII written by Zhongzhi Shi and published by Springer Nature. This book was released on with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Computer Vision – ECCV 2022

Download Computer Vision – ECCV 2022 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031200837
Total Pages : 801 pages
Book Rating : 4.0/5 (312 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision – ECCV 2022 by : Shai Avidan

Download or read book Computer Vision – ECCV 2022 written by Shai Avidan and published by Springer Nature. This book was released on 2022-11-02 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Neural Nets

Download Neural Nets PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540458085
Total Pages : 250 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Neural Nets by : Maria Marinaro

Download or read book Neural Nets written by Maria Marinaro and published by Springer. This book was released on 2003-06-30 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-proceedings of the 13th Italian Workshop on Neural Nets, WIRN VIETRI 2002, held in Vietri sul Mare, Italy in May/June 2002.The 21 revised full papers presented together with three invited papers were carefully reviewed and revised during two rounds of selection and improvement. The papers are organized in topical sections on architectures and algorithms, image and signal processing applications, and learning in neural networks.

Advances in Knowledge Discovery and Data Mining

Download Advances in Knowledge Discovery and Data Mining PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 303016148X
Total Pages : 654 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Advances in Knowledge Discovery and Data Mining by : Qiang Yang

Download or read book Advances in Knowledge Discovery and Data Mining written by Qiang Yang and published by Springer. This book was released on 2019-04-03 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set LNAI 11439, 11440, and 11441 constitutes the thoroughly refereed proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2019, held in Macau, China, in April 2019. The 137 full papers presented were carefully reviewed and selected from 542 submissions. The papers present new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, visualization, decision-making systems, and the emerging applications. They are organized in the following topical sections: classification and supervised learning; text and opinion mining; spatio-temporal and stream data mining; factor and tensor analysis; healthcare, bioinformatics and related topics; clustering and anomaly detection; deep learning models and applications; sequential pattern mining; weakly supervised learning; recommender system; social network and graph mining; data pre-processing and feature selection; representation learning and embedding; mining unstructured and semi-structured data; behavioral data mining; visual data mining; and knowledge graph and interpretable data mining.

Mathematics for Machine Learning

Download Mathematics for Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108569323
Total Pages : 392 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Mathematics for Machine Learning by : Marc Peter Deisenroth

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.