Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Regularization Of Ill Posed Problems
Download Regularization Of Ill Posed Problems full books in PDF, epub, and Kindle. Read online Regularization Of Ill Posed Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Regularization Algorithms for Ill-Posed Problems by : Anatoly B. Bakushinsky
Download or read book Regularization Algorithms for Ill-Posed Problems written by Anatoly B. Bakushinsky and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-02-05 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This specialized and authoritative book contains an overview of modern approaches to constructing approximations to solutions of ill-posed operator equations, both linear and nonlinear. These approximation schemes form a basis for implementable numerical algorithms for the stable solution of operator equations arising in contemporary mathematical modeling, and in particular when solving inverse problems of mathematical physics. The book presents in detail stable solution methods for ill-posed problems using the methodology of iterative regularization of classical iterative schemes and the techniques of finite dimensional and finite difference approximations of the problems under study. Special attention is paid to ill-posed Cauchy problems for linear operator differential equations and to ill-posed variational inequalities and optimization problems. The readers are expected to have basic knowledge in functional analysis and differential equations. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems, and also to advanced students in these fields. Contents Introduction Regularization Methods For Linear Equations Finite Difference Methods Iterative Regularization Methods Finite-Dimensional Iterative Processes Variational Inequalities and Optimization Problems
Book Synopsis Ill-Posed Problems: Theory and Applications by : A. Bakushinsky
Download or read book Ill-Posed Problems: Theory and Applications written by A. Bakushinsky and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have been characterized by the increasing amountofpublications in the field ofso-called ill-posed problems. This is easilyunderstandable because we observe the rapid progress of a relatively young branch ofmathematics, ofwhich the first results date back to about 30 years ago. By now, impressive results have been achieved both in the theory ofsolving ill-posed problems and in the applicationsofalgorithms using modem computers. To mention just one field, one can name the computer tomography which could not possibly have been developed without modem tools for solving ill-posed problems. When writing this book, the authors tried to define the place and role of ill posed problems in modem mathematics. In a few words, we define the theory of ill-posed problems as the theory of approximating functions with approximately given arguments in functional spaces. The difference between well-posed and ill posed problems is concerned with the fact that the latter are associated with discontinuous functions. This approach is followed by the authors throughout the whole book. We hope that the theoretical results will be of interest to researchers working in approximation theory and functional analysis. As for particular algorithms for solving ill-posed problems, the authors paid general attention to the principles ofconstructing such algorithms as the methods for approximating discontinuous functions with approximately specified arguments. In this way it proved possible to define the limits of applicability of regularization techniques.
Book Synopsis Iterative Regularization Methods for Nonlinear Ill-Posed Problems by : Barbara Kaltenbacher
Download or read book Iterative Regularization Methods for Nonlinear Ill-Posed Problems written by Barbara Kaltenbacher and published by Walter de Gruyter. This book was released on 2008-09-25 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.
Book Synopsis Regularization Theory for Ill-posed Problems by : Shuai Lu
Download or read book Regularization Theory for Ill-posed Problems written by Shuai Lu and published by ISSN. This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Book Synopsis Numerical Regularization for Atmospheric Inverse Problems by : Adrian Doicu
Download or read book Numerical Regularization for Atmospheric Inverse Problems written by Adrian Doicu and published by Springer Science & Business Media. This book was released on 2010-07-16 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The retrieval problems arising in atmospheric remote sensing belong to the class of the - called discrete ill-posed problems. These problems are unstable under data perturbations, and can be solved by numerical regularization methods, in which the solution is stabilized by taking additional information into account. The goal of this research monograph is to present and analyze numerical algorithms for atmospheric retrieval. The book is aimed at physicists and engineers with some ba- ground in numerical linear algebra and matrix computations. Although there are many practical details in this book, for a robust and ef?cient implementation of all numerical algorithms, the reader should consult the literature cited. The data model adopted in our analysis is semi-stochastic. From a practical point of view, there are no signi?cant differences between a semi-stochastic and a determin- tic framework; the differences are relevant from a theoretical point of view, e.g., in the convergence and convergence rates analysis. After an introductory chapter providing the state of the art in passive atmospheric remote sensing, Chapter 2 introduces the concept of ill-posedness for linear discrete eq- tions. To illustrate the dif?culties associated with the solution of discrete ill-posed pr- lems, we consider the temperature retrieval by nadir sounding and analyze the solvability of the discrete equation by using the singular value decomposition of the forward model matrix.
Book Synopsis Regularization of Inverse Problems by : Heinz Werner Engl
Download or read book Regularization of Inverse Problems written by Heinz Werner Engl and published by Springer Science & Business Media. This book was released on 2000-03-31 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the mathematical theory of regularization methods and gives an account of the currently available results about regularization methods for linear and nonlinear ill-posed problems. Both continuous and iterative regularization methods are considered in detail with special emphasis on the development of parameter choice and stopping rules which lead to optimal convergence rates.
Book Synopsis Numerical Methods for the Solution of Ill-Posed Problems by : A.N. Tikhonov
Download or read book Numerical Methods for the Solution of Ill-Posed Problems written by A.N. Tikhonov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in science, technology and engineering are posed in the form of operator equations of the first kind, with the operator and RHS approximately known. But such problems often turn out to be ill-posed, having no solution, or a non-unique solution, and/or an unstable solution. Non-existence and non-uniqueness can usually be overcome by settling for `generalised' solutions, leading to the need to develop regularising algorithms. The theory of ill-posed problems has advanced greatly since A. N. Tikhonov laid its foundations, the Russian original of this book (1990) rapidly becoming a classical monograph on the topic. The present edition has been completely updated to consider linear ill-posed problems with or without a priori constraints (non-negativity, monotonicity, convexity, etc.). Besides the theoretical material, the book also contains a FORTRAN program library. Audience: Postgraduate students of physics, mathematics, chemistry, economics, engineering. Engineers and scientists interested in data processing and the theory of ill-posed problems.
Book Synopsis Handbook of Mathematical Methods in Imaging by : Otmar Scherzer
Download or read book Handbook of Mathematical Methods in Imaging written by Otmar Scherzer and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Book Synopsis Theory of Linear Ill-Posed Problems and its Applications by : Valentin K. Ivanov
Download or read book Theory of Linear Ill-Posed Problems and its Applications written by Valentin K. Ivanov and published by Walter de Gruyter. This book was released on 2013-02-18 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is a revised and extended version of the Russian edition from 1978. It includes the general theory of linear ill-posed problems concerning e. g. the structure of sets of uniform regularization, the theory of error estimation, and the optimality method. As a distinguishing feature the book considers ill-posed problems not only in Hilbert but also in Banach spaces. It is natural that since the appearance of the first edition considerable progress has been made in the theory of inverse and ill-posed problems as wall as in ist applications. To reflect these accomplishments the authors included additional material e. g. comments to each chapter and a list of monographs with annotations.
Book Synopsis Handbook of Mathematical Geodesy by : Willi Freeden
Download or read book Handbook of Mathematical Geodesy written by Willi Freeden and published by Birkhäuser. This book was released on 2018-06-11 with total page 938 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by leading experts, this book provides a clear and comprehensive survey of the “status quo” of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today’s least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.
Book Synopsis Inverse and Ill-posed Problems by : Sergey I. Kabanikhin
Download or read book Inverse and Ill-posed Problems written by Sergey I. Kabanikhin and published by Walter de Gruyter. This book was released on 2011-12-23 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of ill-posed problems originated in an unusual way. As a rule, a new concept is a subject in which its creator takes a keen interest. The concept of ill-posed problems was introduced by Hadamard with the comment that these problems are physically meaningless and not worthy of the attention of serious researchers. Despite Hadamard's pessimistic forecasts, however, his unloved "child" has turned into a powerful theory whose results are used in many fields of pure and applied mathematics. What is the secret of its success? The answer is clear. Ill-posed problems occur everywhere and it is unreasonable to ignore them. Unlike ill-posed problems, inverse problems have no strict mathematical definition. In general, they can be described as the task of recovering a part of the data of a corresponding direct (well-posed) problem from information about its solution. Inverse problems were first encountered in practice and are mostly ill-posed. The urgent need for their solution, especially in geological exploration and medical diagnostics, has given powerful impetus to the development of the theory of ill-posed problems. Nowadays, the terms "inverse problem" and "ill-posed problem" are inextricably linked to each other. Inverse and ill-posed problems are currently attracting great interest. A vast literature is devoted to these problems, making it necessary to systematize the accumulated material. This book is the first small step in that direction. We propose a classification of inverse problems according to the type of equation, unknowns and additional information. We consider specific problems from a single position and indicate relationships between them. The problems relate to different areas of mathematics, such as linear algebra, theory of integral equations, integral geometry, spectral theory and mathematical physics. We give examples of applied problems that can be studied using the techniques we describe. This book was conceived as a textbook on the foundations of the theory of inverse and ill-posed problems for university students. The author's intention was to explain this complex material in the most accessible way possible. The monograph is aimed primarily at those who are just beginning to get to grips with inverse and ill-posed problems but we hope that it will be useful to anyone who is interested in the subject.
Book Synopsis Computational Methods for Inverse Problems by : Curtis R. Vogel
Download or read book Computational Methods for Inverse Problems written by Curtis R. Vogel and published by SIAM. This book was released on 2002-01-01 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.
Book Synopsis Inverse and Ill-posed Problems by : Heinz W. Engl
Download or read book Inverse and Ill-posed Problems written by Heinz W. Engl and published by . This book was released on 1987 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse and Ill-Posed Problems.
Book Synopsis Inverse Problems for Partial Differential Equations by : Victor Isakov
Download or read book Inverse Problems for Partial Differential Equations written by Victor Isakov and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recovery of inclusions from anomalies of their gravity fields, reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurement. By presenting the data in a readable and informative manner, the book introduces both scientific and engineering researchers as well as graduate students to the significant work done in this area in recent years, relating it to broader themes in mathematical analysis.
Book Synopsis Discrete Inverse Problems by : Per Christian Hansen
Download or read book Discrete Inverse Problems written by Per Christian Hansen and published by SIAM. This book was released on 2010-01-01 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the practical treatment of inverse problems by means of numerical methods, with a focus on basic mathematical and computational aspects. To solve inverse problems, we demonstrate that insight about them goes hand in hand with algorithms.
Book Synopsis Well-posed, Ill-posed, and Intermediate Problems with Applications by : Petrov Yuri P.
Download or read book Well-posed, Ill-posed, and Intermediate Problems with Applications written by Petrov Yuri P. and published by Walter de Gruyter. This book was released on 2011-12-22 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with one of the key problems in applied mathematics, namely the investigation into and providing for solution stability in solving equations with due allowance for inaccuracies in set initial data, parameters and coefficients of a mathematical model for an object under study, instrumental function, initial conditions, etc., and also with allowance for miscalculations, including roundoff errors. Until recently, all problems in mathematics, physics and engineering were divided into two classes: well-posed problems and ill-posed problems. The authors introduce a third class of problems: intermediate ones, which are problems that change their property of being well- or ill-posed on equivalent transformations of governing equations, and also problems that display the property of being either well- or ill-posed depending on the type of the functional space used. The book is divided into two parts: Part one deals with general properties of all three classes of mathematical, physical and engineering problems with approaches to solve them; Part two deals with several stable models for solving inverse ill-posed problems, illustrated with numerical examples.
Book Synopsis Iterative Methods for Ill-Posed Problems by : Anatoly B. Bakushinsky
Download or read book Iterative Methods for Ill-Posed Problems written by Anatoly B. Bakushinsky and published by Walter de Gruyter. This book was released on 2010-12-23 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ill-posed problems are encountered in countless areas of real world science and technology. A variety of processes in science and engineering is commonly modeled by algebraic, differential, integral and other equations. In a more difficult case, it can be systems of equations combined with the associated initial and boundary conditions. Frequently, the study of applied optimization problems is also reduced to solving the corresponding equations. These equations, encountered both in theoretical and applied areas, may naturally be classified as operator equations. The current textbook will focus on iterative methods for operator equations in Hilbert spaces.