Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Random Sets And Related Topics
Download Random Sets And Related Topics full books in PDF, epub, and Kindle. Read online Random Sets And Related Topics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Theory of Random Sets by : Ilya Molchanov
Download or read book Theory of Random Sets written by Ilya Molchanov and published by Springer Science & Business Media. This book was released on 2005-11-28 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first systematic exposition of random sets theory since Matheron (1975), with full proofs, exhaustive bibliographies and literature notes Interdisciplinary connections and applications of random sets are emphasized throughout the book An extensive bibliography in the book is available on the Web at http://liinwww.ira.uka.de/bibliography/math/random.closed.sets.html, and is accompanied by a search engine
Book Synopsis Randon Sets and Related Topics by : Gheorghe Bocşan
Download or read book Randon Sets and Related Topics written by Gheorghe Bocşan and published by . This book was released on 1986 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Random Sets written by John Goutsias and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications RANDOM SETS: THEORY AND APPLICATIONS is based on the proceedings of a very successful 1996 three-day Summer Program on "Application and Theory of Random Sets." We would like to thank the scientific organizers: John Goutsias (Johns Hopkins University), Ronald P.S. Mahler (Lockheed Martin), and Hung T. Nguyen (New Mexico State University) for their excellent work as organizers of the meeting and for editing the proceedings. We also take this opportunity to thank the Army Research Office (ARO), the Office ofNaval Research (0NR), and the Eagan, MinnesotaEngineering Center ofLockheed Martin Tactical Defense Systems, whose financial support made the summer program possible. Avner Friedman Robert Gulliver v PREFACE "Later generations will regard set theory as a disease from which one has recovered. " - Henri Poincare Random set theory was independently conceived by D.G. Kendall and G. Matheron in connection with stochastic geometry. It was however G.
Book Synopsis New Trends in Stochastic Analysis and Related Topics by : Huaizhong Zhao
Download or read book New Trends in Stochastic Analysis and Related Topics written by Huaizhong Zhao and published by World Scientific. This book was released on 2012 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.
Book Synopsis Random Sets in Econometrics by : Ilya Molchanov
Download or read book Random Sets in Econometrics written by Ilya Molchanov and published by Cambridge University Press. This book was released on 2018-04-12 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first full-length study of how the theory of random sets can be applied in econometrics.
Book Synopsis Limit Theorems for Unions of Random Closed Sets by : Ilya S. Molchanov
Download or read book Limit Theorems for Unions of Random Closed Sets written by Ilya S. Molchanov and published by Springer. This book was released on 2006-11-15 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book concerns limit theorems and laws of large numbers for scaled unionsof independent identically distributed random sets. These results generalizewell-known facts from the theory of extreme values. Limiting distributions (called union-stable) are characterized and found explicitly for many examples of random closed sets. The speed of convergence in the limit theorems for unions is estimated by means of the probability metrics method.It includes the evaluation of distances between distributions of random sets constructed similarly to the well-known distances between distributions of random variables. The techniques include regularly varying functions, topological properties of the space of closed sets, Choquet capacities, convex analysis and multivalued functions. Moreover, the concept of regular variation is elaborated for multivalued (set-valued) functions. Applications of the limit theorems to simulation of random sets, statistical tests, polygonal approximations of compacts, limit theorems for pointwise maxima of random functions are considered. Several open problems are mentioned. Addressed primarily to researchers in the theory of random sets, stochastic geometry and extreme value theory, the book will also be of interest to applied mathematicians working on applications of extremal processes and their spatial counterparts. The book is self-contained, and no familiarity with the theory of random sets is assumed.
Book Synopsis An Introduction to Random Sets by : Hung T. Nguyen
Download or read book An Introduction to Random Sets written by Hung T. Nguyen and published by CRC Press. This book was released on 2006-03-27 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of random sets is a large and rapidly growing area with connections to many areas of mathematics and applications in widely varying disciplines, from economics and decision theory to biostatistics and image analysis. The drawback to such diversity is that the research reports are scattered throughout the literature, with the result that i
Book Synopsis Stochastic Processes and Related Topics by : Ioannis Karatzas
Download or read book Stochastic Processes and Related Topics written by Ioannis Karatzas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last twenty years extensive research has been devoted to a better understanding of the stable and other closely related infinitely divisible mod els. Stamatis Cambanis, a distinguished educator and researcher, played a special leadership role in the development of these research efforts, particu larly related to stable processes from the early seventies until his untimely death in April '95. This commemorative volume consists of a collection of research articles devoted to reviewing the state of the art of this and other rapidly developing research and to explore new directions of research in these fields. The volume is a tribute to the Life and Work of Stamatis by his students, friends, and colleagues whose personal and professional lives he has deeply touched through his generous insights and dedication to his profession. Before the idea of this volume was conceived, two conferences were held in the memory of Stamatis. The first was organized by the University of Athens and the Athens University of Economics and was held in Athens during December 18-19, 1995. The second was a significant part of a Spe cial IMS meeting held at the campus of the University of North Carolina at Chapel Hill during October 17-19, 1996. It is the selfless effort of sev eral people that brought about these conferences. We believe that this is an appropriate place to acknowledge their effort; and on behalf of all the participants, we extend sincere thanks to all these persons.
Book Synopsis Random Sets and Invariants for (Type II) Continuous Tensor Product Systems of Hilbert Spaces by : Volkmar Liebscher
Download or read book Random Sets and Invariants for (Type II) Continuous Tensor Product Systems of Hilbert Spaces written by Volkmar Liebscher and published by American Mathematical Soc.. This book was released on 2009-04-10 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a series of papers Tsirelson constructed from measure types of random sets or (generalised) random processes a new range of examples for continuous tensor product systems of Hilbert spaces introduced by Arveson for classifying $E_0$-semigroups upto cocycle conjugacy. This paper starts from establishing the converse. So the author connects each continuous tensor product system of Hilbert spaces with measure types of distributions of random (closed) sets in $[0,1]$ or $\mathbb R_+$. These measure types are stationary and factorise over disjoint intervals. In a special case of this construction, the corresponding measure type is an invariant of the product system. This shows, completing in a more systematic way the Tsirelson examples, that the classification scheme for product systems into types $\mathrm{I}_n$, $\mathrm{II}_n$ and $\mathrm{III}$ is not complete. Moreover, based on a detailed study of this kind of measure types, the author constructs for each stationary factorising measure type a continuous tensor product system of Hilbert spaces such that this measure type arises as the before mentioned invariant.
Book Synopsis Level Sets and Extrema of Random Processes and Fields by : Jean-Marc Azais
Download or read book Level Sets and Extrema of Random Processes and Fields written by Jean-Marc Azais and published by John Wiley & Sons. This book was released on 2009-02-17 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely and comprehensive treatment of random field theory with applications across diverse areas of study Level Sets and Extrema of Random Processes and Fields discusses how to understand the properties of the level sets of paths as well as how to compute the probability distribution of its extremal values, which are two general classes of problems that arise in the study of random processes and fields and in related applications. This book provides a unified and accessible approach to these two topics and their relationship to classical theory and Gaussian processes and fields, and the most modern research findings are also discussed. The authors begin with an introduction to the basic concepts of stochastic processes, including a modern review of Gaussian fields and their classical inequalities. Subsequent chapters are devoted to Rice formulas, regularity properties, and recent results on the tails of the distribution of the maximum. Finally, applications of random fields to various areas of mathematics are provided, specifically to systems of random equations and condition numbers of random matrices. Throughout the book, applications are illustrated from various areas of study such as statistics, genomics, and oceanography while other results are relevant to econometrics, engineering, and mathematical physics. The presented material is reinforced by end-of-chapter exercises that range in varying degrees of difficulty. Most fundamental topics are addressed in the book, and an extensive, up-to-date bibliography directs readers to existing literature for further study. Level Sets and Extrema of Random Processes and Fields is an excellent book for courses on probability theory, spatial statistics, Gaussian fields, and probabilistic methods in real computation at the upper-undergraduate and graduate levels. It is also a valuable reference for professionals in mathematics and applied fields such as statistics, engineering, econometrics, mathematical physics, and biology.
Book Synopsis Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables by : Shoumei Li
Download or read book Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables written by Shoumei Li and published by Springer Science & Business Media. This book was released on 2002-10-31 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a clear, systematic treatment of convergence theorems of set-valued random variables (random sets) and fuzzy set-valued random variables (random fuzzy sets). Topics such as strong laws of large numbers and central limit theorems, including new results in connection with the theory of empirical processes are covered. The author's own recent developments on martingale convergence theorems and their applications to data processing are also included. The mathematical foundations along with a clear explanation such as Hölmander's embedding theorem, notions of various convergence of sets and fuzzy sets, Aumann integrals, conditional expectations, selection theorems, measurability and integrability arguments for both set-valued and fuzzy set-valued random variables and newly obtained optimizations techniques based on invariant properties are also given.
Book Synopsis Theory of Random Sets by : Ilya Molchanov
Download or read book Theory of Random Sets written by Ilya Molchanov and published by Springer Science & Business Media. This book was released on 2005-05-11 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first systematic exposition of random sets theory since Matheron (1975), with full proofs, exhaustive bibliographies and literature notes Interdisciplinary connections and applications of random sets are emphasized throughout the book An extensive bibliography in the book is available on the Web at http://liinwww.ira.uka.de/bibliography/math/random.closed.sets.html, and is accompanied by a search engine
Book Synopsis Particle Filters for Random Set Models by : Branko Ristic
Download or read book Particle Filters for Random Set Models written by Branko Ristic and published by Springer Science & Business Media. This book was released on 2013-04-15 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based on the Monte Carlo statistical method. Although the resulting algorithms, known as particle filters, have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. This book is ideal for graduate students, researchers, scientists and engineers interested in Bayesian estimation.
Book Synopsis Counterexamples in Probability by : Jordan M. Stoyanov
Download or read book Counterexamples in Probability written by Jordan M. Stoyanov and published by Courier Corporation. This book was released on 2014-01-15 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: "While most mathematical examples illustrate the truth of a statement, counterexamples demonstrate a statement's falsity. Enjoyable topics of study, counterexamples are valuable tools for teaching and learning. The definitive book on the subject in regards to probability, this third edition features the author's revisions and corrections plus a substantial new appendix. 2013 edition"--
Book Synopsis Value Distribution Theory and Related Topics by : Grigor A. Barsegian
Download or read book Value Distribution Theory and Related Topics written by Grigor A. Barsegian and published by Springer Science & Business Media. This book was released on 2006-05-02 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Nevanlinna theory of value distribution of meromorphic functions, one of the milestones of complex analysis during the last century, was c- ated to extend the classical results concerning the distribution of of entire functions to the more general setting of meromorphic functions. Later on, a similar reasoning has been applied to algebroid functions, subharmonic functions and meromorphic functions on Riemann surfaces as well as to - alytic functions of several complex variables, holomorphic and meromorphic mappings and to the theory of minimal surfaces. Moreover, several appli- tions of the theory have been exploited, including complex differential and functional equations, complex dynamics and Diophantine equations. The main emphasis of this collection is to direct attention to a number of recently developed novel ideas and generalizations that relate to the - velopment of value distribution theory and its applications. In particular, we mean a recent theory that replaces the conventional consideration of counting within a disc by an analysis of their geometric locations. Another such example is presented by the generalizations of the second main theorem to higher dimensional cases by using the jet theory. Moreover, s- ilar ideas apparently may be applied to several related areas as well, such as to partial differential equations and to differential geometry. Indeed, most of these applications go back to the problem of analyzing zeros of certain complex or real functions, meaning in fact to investigate level sets or level surfaces.
Book Synopsis Topics in Random Matrix Theory by : Terence Tao
Download or read book Topics in Random Matrix Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2012-03-21 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as iid matrix ensembles. The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.
Book Synopsis Schaum's Outline of Set Theory and Related Topics by : Seymour Lipschutz
Download or read book Schaum's Outline of Set Theory and Related Topics written by Seymour Lipschutz and published by McGraw Hill Professional. This book was released on 1998-07-22 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: More than 225,000 students study set theory every year. This is an ideal supplementary study guide for all textbooks on the subject, or it can be used as a complete self-study course. It makes math clear to liberal arts majors and teaches effective problem solving with 530 fully solved example problems. Illustrated.