Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Quantum Transport Through Nanostructures
Download Quantum Transport Through Nanostructures full books in PDF, epub, and Kindle. Read online Quantum Transport Through Nanostructures ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Quantum Transport in Nanostructures and Molecules by : Colin John Lambert
Download or read book Quantum Transport in Nanostructures and Molecules written by Colin John Lambert and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference text presents a conceptual framework for understanding room-temperature electron and phonon transport through molecules and other quantum objects. The flow of electricity through molecules is explained at the boundary of physics and chemistry, providing an authoritative introduction to molecular electronics for physicists, and quantum transport for chemists. Professor Lambert provides a pedagogical account of the fundamental concepts needed to understand quantum transport and thermoelectricity in molecular-scale and nanoscale structures. The material provides researchers and advanced students with an understanding of how quantum transport relates to other areas of materials modelling, condensed matter and computational chemistry. After reading the book, the reader will be familiar with the basic concepts of molecular-orbital theory and scattering theory, which underpin current theories of quantum transport.
Book Synopsis Transport in Nanostructures by : David K. Ferry
Download or read book Transport in Nanostructures written by David K. Ferry and published by Cambridge University Press. This book was released on 2009-08-20 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.
Book Synopsis Theory of Quantum Transport at Nanoscale by : Dmitry Ryndyk
Download or read book Theory of Quantum Transport at Nanoscale written by Dmitry Ryndyk and published by Springer. This book was released on 2015-12-08 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to a rapidly developing field of modern theoretical physics – the theory of quantum transport at nanoscale. The theoretical methods considered in the book are in the basis of our understanding of charge, spin and heat transport in nanostructures and nanostructured materials and are widely used in nanoelectronics, molecular electronics, spin-dependent electronics (spintronics) and bio-electronics. The book is based on lectures for graduate and post-graduate students at the University of Regensburg and the Technische Universität Dresden (TU Dresden). The first part is devoted to the basic concepts of quantum transport: Landauer-Büttiker method and matrix Green function formalism for coherent transport, Tunneling (Transfer) Hamiltonian and master equation methods for tunneling, Coulomb blockade, vibrons and polarons. The results in this part are obtained as possible without sophisticated techniques, such as nonequilibrium Green functions, which are considered in detail in the second part. A general introduction into the nonequilibrium Green function theory is given. The approach based on the equation-of-motion technique, as well as more sophisticated one based on the Dyson-Keldysh diagrammatic technique are presented. The main attention is paid to the theoretical methods able to describe the nonequilibrium (at finite voltage) electron transport through interacting nanosystems, specifically the correlation effects due to electron-electron and electron-vibron interactions.
Book Synopsis Dissipative Quantum Mechanics of Nanostructures by : Andrei D. Zaikin
Download or read book Dissipative Quantum Mechanics of Nanostructures written by Andrei D. Zaikin and published by CRC Press. This book was released on 2019-05-24 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continuing miniaturization of electronic devices, together with the quickly growing number of nanotechnological applications, demands a profound understanding of the underlying physics. Most of the fundamental problems of modern condensed matter physics involve various aspects of quantum transport and fluctuation phenomena at the nanoscale. In nanostructures, electrons are usually confined to a limited volume and interact with each other and lattice ions, simultaneously suffering multiple scattering events on impurities, barriers, surface imperfections, and other defects. Electron interaction with other degrees of freedom generally yields two major consequences, quantum dissipation and quantum decoherence. In other words, electrons can lose their energy and ability for quantum interference even at very low temperatures. These two different, but related, processes are at the heart of all quantum phenomena discussed in this book. This book presents copious details to facilitate the understanding of the basic physics behind a result and the learning to technically reproduce the result without delving into extra literature. The book subtly balances the description of theoretical methods and techniques and the display of the rich landscape of the physical phenomena that can be accessed by these methods. It is useful for a broad readership ranging from master’s and PhD students to postdocs and senior researchers.
Book Synopsis Theory of Transport Properties of Semiconductor Nanostructures by : Eckehard Schöll
Download or read book Theory of Transport Properties of Semiconductor Nanostructures written by Eckehard Schöll and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in the fabrication of semiconductors have created almost un limited possibilities to design structures on a nanometre scale with extraordinary electronic and optoelectronic properties. The theoretical understanding of elec trical transport in such nanostructures is of utmost importance for future device applications. This represents a challenging issue of today's basic research since it requires advanced theoretical techniques to cope with the quantum limit of charge transport, ultrafast carrier dynamics and strongly nonlinear high-field ef fects. This book, which appears in the electronic materials series, presents an over view of the theoretical background and recent developments in the theory of electrical transport in semiconductor nanostructures. It contains 11 chapters which are written by experts in their fields. Starting with a tutorial introduction to the subject in Chapter 1, it proceeds to present different approaches to transport theory. The semiclassical Boltzmann transport equation is in the centre of the next three chapters. Hydrodynamic moment equations (Chapter 2), Monte Carlo techniques (Chapter 3) and the cellular au tomaton approach (Chapter 4) are introduced and illustrated with applications to nanometre structures and device simulation. A full quantum-transport theory covering the Kubo formalism and nonequilibrium Green's functions (Chapter 5) as well as the density matrix theory (Chapter 6) is then presented.
Book Synopsis Quantum Transport by : Supriyo Datta
Download or read book Quantum Transport written by Supriyo Datta and published by Cambridge University Press. This book was released on 2005-06-16 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the conceptual framework underlying the atomistic theory of matter, emphasizing those aspects that relate to current flow. This includes some of the most advanced concepts of non-equilibrium quantum statistical mechanics. No prior acquaintance with quantum mechanics is assumed. Chapter 1 provides a description of quantum transport in elementary terms accessible to a beginner. The book then works its way from hydrogen to nanostructures, with extensive coverage of current flow. The final chapter summarizes the equations for quantum transport with illustrative examples showing how conductors evolve from the atomic to the ohmic regime as they get larger. Many numerical examples are used to provide concrete illustrations and the corresponding Matlab codes can be downloaded from the web. Videostreamed lectures, keyed to specific sections of the book, are also available through the web. This book is primarily aimed at senior and graduate students.
Book Synopsis Semiconductor Nanostructures by : Thomas Ihn
Download or read book Semiconductor Nanostructures written by Thomas Ihn and published by Oxford University Press. This book was released on 2010 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the physics of semiconductor nanostructures and their transport properties emphasizes five fundamental transport phenomena: quantized conductance, tunnelling transport, the Aharonov-Bohm effect, the quantum Hall effect and the Coulomb blockade effect.
Book Synopsis Quantum Transport by : Yuli V. Nazarov
Download or read book Quantum Transport written by Yuli V. Nazarov and published by Cambridge University Press. This book was released on 2009-05-28 with total page 1 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum transport is a diverse field, sometimes combining seemingly contradicting concepts - quantum and classical, conduction and insulating - within a single nanodevice. Quantum transport is an essential and challenging part of nanoscience, and understanding its concepts and methods is vital to the successful fabrication of devices at the nanoscale. This textbook is a comprehensive introduction to the rapidly developing field of quantum transport. The authors present the comprehensive theoretical background, and explore the groundbreaking experiments that laid the foundations of the field. Ideal for graduate students, each section contains control questions and exercises to check readers' understanding of the topics covered. Its broad scope and in-depth analysis of selected topics will appeal to researchers and professionals working in nanoscience.
Book Synopsis Electron Transport in Nanostructures and Mesoscopic Devices by : Thierry Ouisse
Download or read book Electron Transport in Nanostructures and Mesoscopic Devices written by Thierry Ouisse and published by John Wiley & Sons. This book was released on 2013-03-01 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces researchers and students to the physical principles which govern the operation of solid-state devices whose overall length is smaller than the electron mean free path. In quantum systems such as these, electron wave behavior prevails, and transport properties must be assessed by calculating transmission amplitudes rather than microscopic conductivity. Emphasis is placed on detailing the physical laws that apply under these circumstances, and on giving a clear account of the most important phenomena. The coverage is comprehensive, with mathematics and theoretical material systematically kept at the most accessible level. The various physical effects are clearly differentiated, ranging from transmission formalism to the Coulomb blockade effect and current noise fluctuations. Practical exercises and solutions have also been included to facilitate the reader's understanding.
Book Synopsis Transport In Multilayered Nanostructures: The Dynamical Mean-field Theory Approach (Second Edition) by : James K Freericks
Download or read book Transport In Multilayered Nanostructures: The Dynamical Mean-field Theory Approach (Second Edition) written by James K Freericks and published by World Scientific. This book was released on 2016-03-15 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last 25 years, dynamical mean-field theory (DMFT) has emerged as one of the most powerful new developments in many-body physics. Written by one of the key researchers in the field, this book presents the first comprehensive treatment of this ever-developing topic. Transport in Mutlilayered Nanostructures is varied and modern in its scope, and:A series of over 50 problems help develop the skills to allow readers to reach the level of being able to contribute to research. This book is suitable for an advanced graduate course in DMFT, and for individualized study by graduate students, postdoctoral fellows and advanced researchers wishing to enter the field.
Book Synopsis Introduction to Graphene-Based Nanomaterials by : Luis E. F. Foa Torres
Download or read book Introduction to Graphene-Based Nanomaterials written by Luis E. F. Foa Torres and published by Cambridge University Press. This book was released on 2014-01-23 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed primer describing the most effective theoretical and computational methods and tools for simulating graphene-based systems.
Book Synopsis Advanced Physics of Electron Transport in Semiconductors and Nanostructures by : Massimo V. Fischetti
Download or read book Advanced Physics of Electron Transport in Semiconductors and Nanostructures written by Massimo V. Fischetti and published by Springer. This book was released on 2016-05-20 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is aimed at second-year graduate students in Physics, Electrical Engineering, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale.Understanding electronic transport in solids requires some basic knowledge of Hamiltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry.Further topics covered include: the theory of energy bands in crystals, of second quantization and elementary excitations in solids, of the dielectric properties of semiconductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconductors and semiconductor nanostructures somewhat at the quantum level, but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also about III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods applied to the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions of the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). An advanced chapter, Chapter 18, is strictly related to the ‘tricky’ transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green’s functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation. Finally, several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. Four appendices complete the text.
Book Synopsis Quantum Transport in One-dimensional Nanostructures by : Joseph Albert Sulpizio
Download or read book Quantum Transport in One-dimensional Nanostructures written by Joseph Albert Sulpizio and published by Stanford University. This book was released on 2011 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: One-dimensional (1D) electronic nanostructures comprise a class of systems that boast tremendous promise for both technological innovation as well as fundamental scientific discovery. To fully harness their potential, it is crucial to understand transport through 1D systems at the most fundamental, quantum level. In this thesis, we describe our investigations down three avenues of quantum transport in 1D: (1) ballistic transport in quantum wires, (2) quantum capacitance measurements of nanostructures, and (3) tunneling measurements in carbon nanotubes. First, we discuss measurements and modeling of hole transport in ballistic quantum wires fabricated by GaAs/AlGaAs cleaved-edge overgrowth, where we find strong g-factor anisotropy, which we associate with spin-orbit coupling, and evidence for the importance of charge interactions, indicated by the observation of "0.7" structure. Additionally, we present the first experimental observation of a predicted spin-orbit gap in the 1D density of states, where counter-propagating spins constituting a spin current are accompanied by a clear signal in the conductance. Next, we present the development of a highly sensitive integrated capacitance bridge for quantum capacitance measurements to be used as a novel probe of 1D systems. We demonstrate the utility of our bridge by measuring the capacitance of top-gated graphene devices, where we cleanly resolve the density of states, and also present preliminary measurements of carbon nanotube devices, where we ultimately aim to extract their mobility. Finally, we discuss a set of transport measurements in carbon nanotubes designed to probe interactions between fermions in 1D in which top gates are used to introduce tunable tunnel barriers.
Author :Christophe Jean Delerue Publisher :Springer Science & Business Media ISBN 13 :3662089033 Total Pages :313 pages Book Rating :4.6/5 (62 download)
Book Synopsis Nanostructures by : Christophe Jean Delerue
Download or read book Nanostructures written by Christophe Jean Delerue and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides the theoretical background needed by physicists, engineers and students to simulate nano-devices, semiconductor quantum dots and molecular devices. It presents in a unified way the theoretical concepts, the more recent semi-empirical and ab initio methods, and their application to experiments. The topics include quantum confinement, dielectric and optical properties, non-radiative processes, defects and impurities, and quantum transport. This guidebook not only provides newcomers with an accessible overview (requiring only basic knowledge of quantum mechanics and solid-state physics) but also provides active researchers with practical simulation tools.
Book Synopsis Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology by : Felix A Buot
Download or read book Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology written by Felix A Buot and published by World Scientific. This book was released on 2009-08-05 with total page 838 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the first comprehensive treatment of discrete phase-space quantum mechanics and the lattice Weyl-Wigner formulation of energy band dynamics, by the originator of these theoretical techniques. The author's quantum superfield theoretical formulation of nonequilibrium quantum physics is given in real time, without the awkward use of artificial time contour employed in previous formulations. These two main quantum theoretical techniques combine to yield general (including quasiparticle-pairing dynamics) and exact quantum transport equations in phase-space, appropriate for nanodevices. The derivation of transport formulas in mesoscopic physics from the general quantum transport equations is also treated. Pioneering nanodevices are discussed in the light of the quantum-transport physics equations, and an in-depth treatment of the physics of resonant tunneling devices is given. Operator Hilbert-space methods and quantum tomography are discussed. Discrete phase-space quantum mechanics on finite fields is treated for completeness and by virtue of its relevance to quantum computing. The phenomenological treatment of evolution superoperator and measurements is given to help clarify the general quantum transport theory. Quantum computing and information theory is covered to demonstrate the foundational aspects of discrete quantum dynamics, particularly in deriving a complete set of multiparticle entangled basis states.
Book Synopsis Electrical Transport in Nanoscale Systems by : Massimiliano Di Ventra
Download or read book Electrical Transport in Nanoscale Systems written by Massimiliano Di Ventra and published by Cambridge University Press. This book was released on 2008-08-07 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been a huge increase in the research and development of nanoscale science and technology. Central to the understanding of the properties of nanoscale structures is the modeling of electronic conduction through these systems. This graduate textbook provides an in-depth description of the transport phenomena relevant to systems of nanoscale dimensions. In this textbook the different theoretical approaches are critically discussed, with emphasis on their basic assumptions and approximations. The book also covers information content in the measurement of currents, the role of initial conditions in establishing a steady state, and the modern use of density-functional theory. Topics are introduced by simple physical arguments, with particular attention to the non-equilibrium statistical nature of electrical conduction, and followed by a detailed formal derivation. This textbook is ideal for graduate students in physics, chemistry, and electrical engineering.
Book Synopsis Electronic Quantum Transport in Mesoscopic Semiconductor Structures by : Thomas Ihn
Download or read book Electronic Quantum Transport in Mesoscopic Semiconductor Structures written by Thomas Ihn and published by Springer. This book was released on 2004-09-09 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Opening with a brief historical account of electron transport from Ohm's law through transport in semiconductor nanostructures, this book discusses topics related to electronic quantum transport. The book is written for graduate students and researchers in the field of mesoscopic semiconductors or in semiconductor nanostructures. Highlights include review of the cryogenic scanning probe techniques applied to semiconductor nanostructures.