Quantification of Phase Behaviour and Physical Properties of Solvents-Heavy Oil/Bitumen-Water Systems at High Pressures and Elevated Temperatures

Download Quantification of Phase Behaviour and Physical Properties of Solvents-Heavy Oil/Bitumen-Water Systems at High Pressures and Elevated Temperatures PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Quantification of Phase Behaviour and Physical Properties of Solvents-Heavy Oil/Bitumen-Water Systems at High Pressures and Elevated Temperatures by : Zehua Chen

Download or read book Quantification of Phase Behaviour and Physical Properties of Solvents-Heavy Oil/Bitumen-Water Systems at High Pressures and Elevated Temperatures written by Zehua Chen and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the excess heat loss of steam assisted gravity drainage (SAGD) processes and low oil production rate of solvent-based processes, the expanding solvent SAGD (ES-SAGD) process has been considered as a promising technique for enhancing heavy oil/bitumen recovery. The main ES-SAGD mechanisms include the heat transferred and dissolution of solvents into the heavy oil/bitumen to swell it and reduce its viscosity, which is closely related to the phase behaviour of solvents-heavy oil/bitumen-water systems. Thus, it is of fundamental and practical importance to accurately quantify the phase behaviour and physical properties of the aforementioned systems. A pragmatic technique has been developed to optimize the reduced temperature for acentric factor for the Peng-Robinson equation of state (PR-EOS) and Soave-Redlich- Kwong equation of state (SRK-EOS) by minimizing the deviation between the measured and calculated vapour pressures. The reduced temperature has its optimum value of 0.59 for the two EOSs, while 0.60 is recommended for practical use. The mutual solubility for n-alkanes/n-alkylbenzenes-water pairs is correlated using the PR-EOS together with the two newly modified alpha functions. The binary interaction parameters (BIPs) for both aqueous phase and liquid hydrocarbon phase are generalized as functions of reduced temperatures and carbon numbers of hydrocarbons, reproducing the experimental measurements well. Then, the modified PR-EOS model is successfully applied to predict the multi-phase compositions and three-phase upper critical ending points (UCEPs) for n-alkane-CO2-water mixtures. A new correlation has been developed to calculate the redefined acentric factor for pseudocomponents (PCs), while new BIP correlations are proposed respectively for ii toluene-water pair and heavy oil/bitumen-water pairs. The BIP correlation for heavy oil/bitumen-water pairs is validated by the measured water solubility in other oils. The newly developed model is found to accurately predict the measured ALV/AL (A is the aqueous phase, L represents the oleic phase, and V denotes the vapour phase) and LV/L boundaries with an overall average absolute relative deviation (AARD) of 4.5% and solvent solubility in the oleic phase with an overall AARD of 9.4%, respectively. Two new methods have been proposed to predict the density/swelling factor for solvents-heavy oil/bitumen/water mixtures, i.e., one is a new volume translation (VT) strategy for PR-EOS, while the other is the ideal mixing rule with effective density (IME) calculated using a newly developed tangent-line method. It is found that both of these two methods are accurate enough, while the IM-E is better than the VT PR-EOS. Experiments for C3H8/CO2-Lloydminster heavy oil/water systems have been performed in a temperature range of 328.7-432.3 K. A dynamic volume analysis method is proposed to simultaneously simulate the total volume and height of vapour/oleic phase interface, while a new framework incorporated with the modified PR-EOS can be used to accurately predict the solvent solubility, phase boundary, and phase density for the aforementioned systems. Also, six widely used mixing rules have been respectively evaluated, while water is incorporated using the ideal mixing rule. The order of the best ones in their accuracy is the volume-based power law > the weight-based power law > the weight-based Cragoe's mixing rule. The effective density rather than real density of dissolved gas should be used for all the volume-based mixing rules.

Phase Behaviour of Solvent(s)/Water/Heavy Oil Systems at High Pressures and Elevated Temperatures Based on Isenthalpic Flash

Download Phase Behaviour of Solvent(s)/Water/Heavy Oil Systems at High Pressures and Elevated Temperatures Based on Isenthalpic Flash PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Phase Behaviour of Solvent(s)/Water/Heavy Oil Systems at High Pressures and Elevated Temperatures Based on Isenthalpic Flash by : Desheng Huang

Download or read book Phase Behaviour of Solvent(s)/Water/Heavy Oil Systems at High Pressures and Elevated Temperatures Based on Isenthalpic Flash written by Desheng Huang and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The hybrid steam-solvent injection processes have been proved to be a promising technique for enhancing heavy oil recovery as they combine the advantages from both heat transfer of steam and mass transfer of solvent(s) to further reduce the viscosity of heavy oil. Multiphase isenthalpic flash calculation is required in compositional simulations of the aforementioned processes, which involve vapour, oleic, and aqueous three-phases since water is inevitably associated with steam injection processes. As such, it is of fundamental and pragmatic importance to accurately quantify the phase behaviour of solvent(s)/water/heavy oil systems at high pressures and elevated temperatures by use of isenthalpic flash algorithms. A modified correlation and a new enthalpy determination algorithm have been developed to more accurately predict ideal gas heat capacities and enthalpies for normal alkanes/alkenes and hydrocarbon fractions, respectively. By assuming that only the presence of water and solvents with high solubilities in water is considered in the aqueous phase, a robust and pragmatic water-associated isenthalpic flash (WAIF) model has been developed to perform multiphase isenthalpic flash calculations for solvent(s)/water/heavy oil mixtures at high pressures and elevated temperatures. The new isenthalpic flash model developed in this work can handle multiphase equilibria flash calculations at high pressures and elevated temperatures. Subsequently, phase boundaries of C3H8/CO2/water/heavy oil mixtures in both the pressure-temperature (P-T) and enthalpy-temperature (H-T) phase diagrams have been determined, respectively. Experimentally, the phase boundary pressures are determined for three C3H8/CO2/water/heavy oil mixtures by using a conventional pressurevolume- temperature (PVT) setup in the P-T phase diagram. Theoretically, the previously developed WAIF model and the new isenthalpic determination algorithm together with the new alpha functions for water and non-water components are applied as the thermodynamic model to reproduce the multiphase boundaries of the aforementioned systems. The water-associated model is able to provide a good prediction of the experimental measurement in terms of phase boundaries and phase compositions. In addition, a new algorithm is developed to determine vapour/liquid/ liquid (VL1L2) phase boundaries of alkane solvent(s)/CO2/heavy oil mixtures. A new thermodynamic model based on the modified Peng-Robinson equation of state (PR EOS) together with the Huron-Vidal mixing rule is developed to experimentally and theoretically quantify the phase behaviour of dimethyl ether (DME)/water/heavy oil mixtures which include polar components. The new model is capable of accurately reproducing the experimentally measured multiphase P-T and H-T boundaries, phase volumes, and swelling factors, while it can also be used to determine DME partition coefficients and DME solubility.

Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs

Download Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128242272
Total Pages : 330 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs by : Xiaohu Dong

Download or read book Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs written by Xiaohu Dong and published by Elsevier. This book was released on 2021-10-27 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Enhanced Oil Recovery Processes for Heavy Oil Reservoirs, Volume 73 systematically introduces these technologies. As the development of heavy oil reservoirs is emphasized, the petroleum industry is faced with the challenges of selecting cost-effective and environmentally friendly recovery processes. This book tackles these challenges with the introduction and investigation of a variety of hybrid EOR processes. In addition, it addresses the application of these hybrid EOR processes in onshore and offshore heavy oil reservoirs, including theoretical, experimental and simulation approaches. This book will be very useful for petroleum engineers, technicians, academics and students who need to study the hybrid EOR processes, In addition, it will provide an excellent reference for field operations by the petroleum industry. Introduces emerging hybrid EOR processes and their technical details Includes case studies to help readers understand the application potential of hybrid EOR processes from different points-of-view Features theoretical, experimental and simulation studies to help readers understand the advantages and challenges of each process

Nonequilibrium Phase Behaviour and Mass Transfer of Alkane Solvents(s)-CO2-Heavy Oil Systems Under Reservoir Conditions

Download Nonequilibrium Phase Behaviour and Mass Transfer of Alkane Solvents(s)-CO2-Heavy Oil Systems Under Reservoir Conditions PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Nonequilibrium Phase Behaviour and Mass Transfer of Alkane Solvents(s)-CO2-Heavy Oil Systems Under Reservoir Conditions by : Yu Shi

Download or read book Nonequilibrium Phase Behaviour and Mass Transfer of Alkane Solvents(s)-CO2-Heavy Oil Systems Under Reservoir Conditions written by Yu Shi and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: During primary heavy oil recovery, a unique phenomenon has been found to be closely associated with an unexpected high recovery factor, a remarkably low gas-oil ratio, and a higher-than-expected well production rate due mainly to the foamy nature of viscous oil containing gas bubbles. Even for secondary and tertiary recovery techniques, it is possible to artificially induce foamy oil flow in heavy oil reservoirs by dissolution with injected gases (e.g., CO2 and alkane solvents), which is characterized by time-dependent (i.e., nonequilibrium) phase behaviour. The entrained gas bubbles in the heavy oil are considered as the main mechanism accounting for such distinct phase behaviour. Therefore, it is of fundamental and practical importance to quantify the nonequilibrium phase behaviour and mass transfer of alkane solvent(s)-CO2-heavy oil systems under reservoir conditions. A novel and pragmatic technique has been firstly developed and validated to accurately quantify the preferential diffusion of each component in alkane solvent(s)- assisted recovery processes with consideration of natural convection induced by the heated and diluted heavy oil. The Peng-Robinson equation of state, heat transfer equation, and diffusion-convection equation are coupled to describe both mass and heat transfer for the aforementioned systems. The individual diffusion coefficient between each component of a gas mixture and liquid phase is respectively determined once either the deviation between the experimentally measured and theoretically calculated mole fraction of CO2/solvents or the deviation between the experimentally measured dynamic swelling factors and the theoretically calculated ones has been minimized. ii A robust and pragmatic technique has also been developed to quantify nonequilibrium phase behaviour of alkane solvent(s)-CO2-heavy oil systems at a constant volume expansion rate and a constant pressure decline rate, respectively. Experimentally, constant-composition expansion (CCE) tests have been conducted for alkane solvent(s)-CO2-heavy oil systems with a PVT setup, during which not only pressure and volume are simultaneously monitored and measured, but also gas samples were respectively collected at the beginning and the end of experiments to perform compositional analysis. Theoretically, mathematical formulations have been developed to quantify the amount of the evolved gas as a function of time, while mathematical models for compressibility and density of the oleic phase mixed with the entrained gas (i.e., foamy oil) are respectively formulated. In addition to a mechanistic model for quantifying a single gas bubble growth, a novel and pragmatic technique has been proposed and validated to quantify dynamic volume of foamy oil for the aforementioned systems under nonequilibrium conditions by taking preferential mass transfer of each component in a gas mixture into account. The individual diffusion coefficient of each gas component with consideration of natural convection is found to be larger than that obtained with conventional methods. An increase in either volume expansion rate or pressure decline rate would increase the critical supersaturation pressure, whereas a high temperature leads to a low critical supersaturation pressure. When pressure is below the pseudo-bubblepoint pressure, density and compressibility of foamy oil are found to sharply decrease and increase at the pseudo-bubblepoint pressure, respectively. Also, pseudo-bubblepoint pressure and rate of gas exsolution is found to be two mechanisms dominating the volume-growth rate of the evolved gas, which is directly proportional to supersaturation pressure, pressure decline rate, and concentration of each gas component under nonequilibrium conditions.

Petroleum Abstracts

Download Petroleum Abstracts PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1752 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Petroleum Abstracts by :

Download or read book Petroleum Abstracts written by and published by . This book was released on 1993 with total page 1752 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

Download Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope by :

Download or read book Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited amount of geographically diverse data, it is not possible to develop a comprehensive predictive model. Based on the comprehensive phase behavior analysis of Alaska North Slope crude oil, a reservoir simulation study was carried out to evaluate the performance of a gas injection enhanced oil recovery technique for the West Sak reservoir. It was found that a definite increase in viscous oil production can be obtained by selecting the proper injectant gas and by optimizing reservoir operating parameters. A comparative analysis is provided, which helps in the decision-making process.

Impact of Pressure and Added Diluents on Rheological Properties of Heavy Oils

Download Impact of Pressure and Added Diluents on Rheological Properties of Heavy Oils PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 165 pages
Book Rating : 4.:/5 (959 download)

DOWNLOAD NOW!


Book Synopsis Impact of Pressure and Added Diluents on Rheological Properties of Heavy Oils by : Sepideh Mortazavi Manesh

Download or read book Impact of Pressure and Added Diluents on Rheological Properties of Heavy Oils written by Sepideh Mortazavi Manesh and published by . This book was released on 2015 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rheological properties of heavy oil and bitumen depend on factors such as temperature, pressure, diluent type and diluent composition, as well as sample shear and thermal histories and shear conditions during measurements. Each of these factors can affect the value of apparent viscosity significantly. Uncertainties in the available literature data arise when one or more of these factors have not been considered and have not been reported. Heavy oil and bitumen exhibit non-Newtonian rheological behaviors at lower temperatures. Methods for detecting and quantifying non-Newtonian behaviors are developed, presented and explored in this work using a well-characterized heavy crude oil. The methods and results presented for Maya crude oil provide a reliable database for rheological model development and evaluation, and a template for assessing the rheological behavior of other heavy crude oils. The thixotropic behavior of Maya crude oil was explored systematically using a stress-controlled rheometer. Thixotropy affects the efficiency and length scale of mixing during blending operations, and flow behaviors in pipes and pipelines following flow disruption where it affects the pressure required to reinitiate flow. Maya crude oil is shown to be a shear thinning fluid below 313 K. The thixotropic behaviors are explored using transient stress techniques (hysteresis loops, step-wise change in shear rate, start-up experiments). The magnitude of the thixotropy effect is larger at lower temperatures. Relationships are identified between rest times and other thixotropic parameters such as hysteresis loop area and stress decay in start-up experiments. Stress growth, which occurs as a result of a step-down in shear rate, is shown to correlate with temperature. The interrelation between rheological behavior of Maya crude oil and its phase behavior is discussed. The effect of pressure on the non-Newtonian rheological properties of Maya crude oil is also investigated over broad ranges of temperature from (258 to 333) K and at pressures up to 150 bar. At fixed temperature, the magnitude of the non-Newtonian behaviors of Maya crude oil appears to increase with increasing the pressure and shear thinning is shown to persist to higher pressures below 313 K. Boundaries of the non-Newtonian region with respect to temperature, pressure and viscosity are identified and discussed. The thixotropic behavior of Maya crude oil is also shown to persist at higher pressure and the recovery of the moduli at rest appears to be faster at elevated pressures than at atmospheric pressure. Understanding the rheological properties of mixtures of heavy oil or bitumen and diluents, specifically at low temperatures, is key in designing different processes employed in production or transportation of these resources reliably and efficiently. The effect of diluents (n-heptane, toluene and toluene + butanone (50/50 vol. %)) on the non-Newtonian behavior of Maya crude oil including shear thinning and thixotropy at temperatures from (258 to 333) K are discussed. Toluene + butanone (50/50 vol.%) addition to Maya crude oil induces the greatest reduction in shear thinning behavior irrespective of temperature. Thixotropic properties of mixtures of Maya crude oil and diluent were studied through start-up experiments. It was shown that toluene + butanone (50/50 vol.%) is the best diluent in moderating the thixotropic effect, while n-heptane showed the most pronounced thixotropic effect. It was shown that toluene + butanone (50/50 vol. %) is more promising in decreasing oil viscosity in comparison to two other diluents tested. Less of this diluent is required to decrease the viscosity to a certain value, which confirms its potential application to be used in the industry as a diluent.

Phase Equilibrium in Mixtures

Download Phase Equilibrium in Mixtures PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 1483152413
Total Pages : 604 pages
Book Rating : 4.4/5 (831 download)

DOWNLOAD NOW!


Book Synopsis Phase Equilibrium in Mixtures by : M. B. King

Download or read book Phase Equilibrium in Mixtures written by M. B. King and published by Elsevier. This book was released on 2013-10-22 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phase Equilibrium in Mixtures deals with phase equilibrium and the methods of correlating, checking, and predicting phase data. Topics covered range from latent heat and vapor pressure to dilute solutions, ideal and near-ideal solutions, and consistency tests. Molecular considerations and their use for the prediction and correlation of data are also discussed. Comprised of nine chapters, this volume begins with an introduction to the role of thermodynamics and the criteria for equilibrium between phases, along with fugacity and the thermodynamic functions of mixing. The discussion then turns to some of the phase phenomena which may be encountered in chemical engineering practice; methods of correlating and extending vapor pressure data and practical techniques for calculating latent heats from these data; the behavior of dilute solutions both at low and high pressures for reacting and non-reacting systems; and the behavior of ideal and near-ideal solutions. The remaining chapters explore non-ideal solutions at normal pressures; practical methods for testing the thermodynamic consistency of phase data; and the extent to which the broad aspects of phase behavior may be interpreted in the light of simple molecular considerations. This book is intended primarily for graduate chemical engineers but should also be of interest to those graduates in physics or chemistry who need to use phase equilibrium data.

Asphaltene Deposition

Download Asphaltene Deposition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351977326
Total Pages : 360 pages
Book Rating : 4.3/5 (519 download)

DOWNLOAD NOW!


Book Synopsis Asphaltene Deposition by : Francisco M. Vargas

Download or read book Asphaltene Deposition written by Francisco M. Vargas and published by CRC Press. This book was released on 2018-05-16 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: As global consumption of fossil fuels such as oil increases, previously abundant sources have become depleted or plagued with obstructions. Asphaltene deposition is one of such obstructions which can significantly decrease the rate of oil production. This book offers concise yet thorough coverage of the complex problem of asphaltene precipitation and deposition in oil production. It covers fundamentals of chemistry, stabilization theories and mechanistic approaches of asphaltene behavior at high temperature and pressure. Asphaltene Deposition: Fundamentals, Prediction, Prevention, and Remediation explains techniques for experimental determination of asphaltene precipitation and deposition and different modeling tools available to forecast the occurrence and magnitude of asphaltene deposition in a given oil field. It discusses strategies for mitigation of asphaltene deposition using chemical inhibition and corresponding challenges, best practices for asphaltene remediation, current research, and case studies.

Energy Information Abstracts

Download Energy Information Abstracts PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 784 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Energy Information Abstracts by :

Download or read book Energy Information Abstracts written by and published by . This book was released on 1993 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Quantification of Mutual Mass Transfer of Gas-Light Oil Systems at High Pressures and Elevated Temperatures

Download Quantification of Mutual Mass Transfer of Gas-Light Oil Systems at High Pressures and Elevated Temperatures PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Quantification of Mutual Mass Transfer of Gas-Light Oil Systems at High Pressures and Elevated Temperatures by : Xiaomeng Dong

Download or read book Quantification of Mutual Mass Transfer of Gas-Light Oil Systems at High Pressures and Elevated Temperatures written by Xiaomeng Dong and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerous tight oil resources that are characterized by both low porosity and permeability have been found in North America during past decades. Due to the extremely low permeability, water injection has found its limitation with its relatively low injectivity. Alternatively, gas injection, such as CO2, N2, hydrocarbon gas, and flue gas, has been made physically possible for enhancing oil recovery under certain conditions, during which molecular diffusion is of great importance. Due to the affordability and sustainability of CO2, N2 and flue gas have been found to be costeffective for enhancing hydrocarbon recovery to a certain extent. Physically, there exists two-way mass transfer between the injected gas and light oil, though the light component extraction has been theoretically neglected. Therefore, it is essential to quantify the mutual mass transfer of gas-light oil systems under reservoir conditions. In this study, a novel and pragmatic technique has been developed to quantify mutual mass transfer between a gas and light oil by dynamic volume analysis. Experimentally, diffusion tests for a CO2-light oil system, a N2-light oil system, and two flue gas-light oil systems, have been conducted at a constant temperature and pressure with a pressure/volume/temperature (PVT) system, while the dynamic swelling factors of oil phase are measured and recorded continuously during the experiments. Gas samples have been collected at end of each diffusion experiment to measure gas compositions by performing gas chromatography (GC) analysis. Theoretically, by combining Fick's second law and Peng-Robinson equation of state, the diffusion coefficients of both gas components and oil phase can be determined once the discrepancies between the measured and calculated dynamic swelling factors and gas compositions have been minimized simultaneously. At end of diffusion experiments, the swelling factor measured for the CO2-light oil system is 1.029, which is higher than that of N2-light oil system (i.e., 1.005). For the two flue gas-light oil systems, the enriched flue gas, which has a higher CO2 concentration, results in a higher swelling factor (i.e., 1.013) at end of diffusion experiment, comparing with that of flue gas-light oil system (i.e., 1.009). Besides, based on the GC analysis results, light components have been found in the gas phase, which proves that there exists two-way mass transfer between gas and oil phases. For the CO2-light oil system and N2-light oil system, at temperature of 336.15 K, the diffusion coefficients of CO2 and N2 are determined to be 12.87×10-9 m2/s at pressure of 2170 kPa and 1.35×10-9 m2/s at pressure of 5275 kPa, respectively. The diffusion coefficients of light oil in gas phase are determined to be 6.04×10-11 m2/s for the CO2- light oil system and 0.26×10-11 m2/s for the N2-light oil system under the corresponding conditions. Similarly, for the enriched flue gas-light oil system, the individual diffusion coefficients determined for CO2 and N2 are 8.35×10-9 m2/s and 1.52×10-9 m2/s at temperature of 336.15 K and pressure of 5275 kPa, respectively, while that of oil in gas phase is 0.07×10-11 m2/s. For the flue gas-light oil system, at the same condition, the individual diffusion coefficients calculated for CO2 and N2 are 6.42×10-9 m2/s and 2.19×10-9 m2/s, respectively, while that of oil in gas phase is 0.08×10-11 m2/s.

Petroleum Abstracts. Literature and Patents

Download Petroleum Abstracts. Literature and Patents PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1416 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Petroleum Abstracts. Literature and Patents by :

Download or read book Petroleum Abstracts. Literature and Patents written by and published by . This book was released on 1990 with total page 1416 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Phase Behavior of Petroleum Reservoir Fluids

Download Phase Behavior of Petroleum Reservoir Fluids PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420018256
Total Pages : 423 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Phase Behavior of Petroleum Reservoir Fluids by : Karen Schou Pedersen

Download or read book Phase Behavior of Petroleum Reservoir Fluids written by Karen Schou Pedersen and published by CRC Press. This book was released on 2006-11-01 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the phase behavior of the various fluids present in a petroleum reservoir is essential for achieving optimal design and cost-effective operations in a petroleum processing plant. Taking advantage of the authors' experience in petroleum processing under challenging conditions, Phase Behavior of Petroleum Reservoir Fluids introdu

Springer Handbook of Petroleum Technology

Download Springer Handbook of Petroleum Technology PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319493477
Total Pages : 1243 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Springer Handbook of Petroleum Technology by : Chang Samuel Hsu

Download or read book Springer Handbook of Petroleum Technology written by Chang Samuel Hsu and published by Springer. This book was released on 2017-12-20 with total page 1243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook provides a comprehensive but concise reference resource for the vast field of petroleum technology. Built on the successful book "Practical Advances in Petroleum Processing" published in 2006, it has been extensively revised and expanded to include upstream technologies. The book is divided into four parts: The first part on petroleum characterization offers an in-depth review of the chemical composition and physical properties of petroleum, which determine the possible uses and the quality of the products. The second part provides a brief overview of petroleum geology and upstream practices. The third part exhaustively discusses established and emerging refining technologies from a practical perspective, while the final part describes the production of various refining products, including fuels and lubricants, as well as petrochemicals, such as olefins and polymers. It also covers process automation and real-time refinery-wide process optimization. Two key chapters provide an integrated view of petroleum technology, including environmental and safety issues.Written by international experts from academia, industry and research institutions, including integrated oil companies, catalyst suppliers, licensors, and consultants, it is an invaluable resource for researchers and graduate students as well as practitioners and professionals.

Phase and Flow Behavior in Petroleum Production

Download Phase and Flow Behavior in Petroleum Production PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 936 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Phase and Flow Behavior in Petroleum Production by : Edward Jack Hoffman

Download or read book Phase and Flow Behavior in Petroleum Production written by Edward Jack Hoffman and published by . This book was released on 1981 with total page 936 pages. Available in PDF, EPUB and Kindle. Book excerpt:

TRANSPORT AND PHASE EQUILIBRIA PROPERTIES FOR STEAM FLOODING OF HEAVY OILS.

Download TRANSPORT AND PHASE EQUILIBRIA PROPERTIES FOR STEAM FLOODING OF HEAVY OILS. PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (684 download)

DOWNLOAD NOW!


Book Synopsis TRANSPORT AND PHASE EQUILIBRIA PROPERTIES FOR STEAM FLOODING OF HEAVY OILS. by :

Download or read book TRANSPORT AND PHASE EQUILIBRIA PROPERTIES FOR STEAM FLOODING OF HEAVY OILS. written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydrocarbon/water and CO[sub 2] systems are frequently found in petroleum recovery processes, petroleum refining, and gasification of coals, lignites and tar sands. Techniques to estimate the phase volume and phase composition are indispensable to design and improve oil recovery processes such as steam, hot water, or CO[sub 2]/steam combinations of flooding techniques typically used for heavy oils. An interdisciplinary research program to quantify transport, PVT, and equilibrium properties of selected oil/CO[sub 2]/water mixtures at pressures up to 10,000 psia and at temperatures up to 500 F has been put in place. The objectives of this research include experimental determination and rigorous modeling and computation of phase equilibrium diagrams, and volumetric properties of hydrocarbon/CO[sub 2]/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils. Highlighting the importance of phase behavior, researchers ([1], and [2]) insist on obtaining truly representative reservoir fluids samples for experimental analysis. The prevailing sampling techniques used for compositional analysis of the fluids have potential for a large source of error. These techniques bring the sample to atmospheric conditions and collect the liquid and vapor portion of the samples for further analysis. We developed a new experimental technique to determine phase volumes, compositions and equilibrium K-values at reservoir conditions. The new methodology is able to measure phase volume and composition at reservoir like temperatures and pressures. We use a mercury free PVT system in conjunction with a Hewlett Packard gas chromatograph capable of measuring compositions on line at high pressures and temperatures. This is made possible by an essentially negligible disturbance of the temperature and pressure equilibrium during phase volume and composition measurements. In addition, not many samples are withdrawn for compositional analysis because a negligible volume (0.1 [micro]l to 0.5 [micro]l) is sent directly to the gas chromatograph through sampling valves. These amounts are less than 1 x 10[sup -5] % of total volume and do not affect the overall composition or equilibrium of the system. A new method to compute multi-component phase equilibrium diagrams based on an improved version of the Peng-Robinson equation has been developed [3]. This new version of the Peng-Robinson equation uses a new volume translation scheme and new mixing rules to improve the accuracy of the calculations. Calculations involving multicomponent mixtures of CO[sub 2]/water and hydrocarbons have been completed. A scheme to lump multi-component materials such as, oils into a small set of ''pseudo-components'' according to the technique outlined by Whitson [4] has been implemented. This final report presents the results of our experimental and predicted phase behavior diagrams and calculations for mixtures of CO[sub 2]/water and real oils at high pressures and temperatures.

Phase Equilibrium Engineering

Download Phase Equilibrium Engineering PDF Online Free

Author :
Publisher : Elsevier Inc. Chapters
ISBN 13 : 0128082585
Total Pages : 50 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Phase Equilibrium Engineering by : Esteban Brignole

Download or read book Phase Equilibrium Engineering written by Esteban Brignole and published by Elsevier Inc. Chapters. This book was released on 2013-04-02 with total page 50 pages. Available in PDF, EPUB and Kindle. Book excerpt: In previous chapters, we have seen the fundamental criteria for phase equilibria and how the phenomenological phase behavior and separation technology of real mixtures are determined by their constituent molecular interactions. Our purpose in this chapter is to present the properties of fluids and the models for the prediction of thermodynamic properties and phase equilibria. These models are classified as predictive models using only pure component properties and semiempirical models based on a molecular thermodynamic approach. Finally, the chapter highlights the importance of the class of mixture and molecular interactions of its components in the selection of thermodynamic models for phase equilibrium calculations.