Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Pseudo Differential Operators And Markov Processes Volume Iii Markov Processes And Applications
Download Pseudo Differential Operators And Markov Processes Volume Iii Markov Processes And Applications full books in PDF, epub, and Kindle. Read online Pseudo Differential Operators And Markov Processes Volume Iii Markov Processes And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Pseudo Differential Operators And Markov Processes, Volume Iii: Markov Processes And Applications by : Niels Jacob
Download or read book Pseudo Differential Operators And Markov Processes, Volume Iii: Markov Processes And Applications written by Niels Jacob and published by World Scientific. This book was released on 2005-06-14 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume concentrates on how to construct a Markov process by starting with a suitable pseudo-differential operator. Feller processes, Hunt processes associated with Lp-sub-Markovian semigroups and processes constructed by using the Martingale problem are at the center of the considerations. The potential theory of these processes is further developed and applications are discussed. Due to the non-locality of the generators, the processes are jump processes and their relations to Levy processes are investigated. Special emphasis is given to the symbol of a process, a notion which generalizes that of the characteristic exponent of a Levy process and provides a natural link to pseudo-differential operator theory./a
Book Synopsis Pseudo Differential Operators & Markov Processes: Markov processes and applications by : Niels Jacob
Download or read book Pseudo Differential Operators & Markov Processes: Markov processes and applications written by Niels Jacob and published by Imperial College Press. This book was released on 2001 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work covers two topics in detail: Fourier analysis, with emphasis on positivity and also on some function spaces and multiplier theorems; and one-parameter operator semigroups with emphasis on Feller semigroups and Lp-sub-Markovian semigroups. In addition, Dirichlet forms are treated.
Book Synopsis Pseudo Differential Operators & Markov Processes by : Niels Jacob
Download or read book Pseudo Differential Operators & Markov Processes written by Niels Jacob and published by Imperial College Press. This book was released on 2005 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume concentrates on how to construct a Markov process by starting with a suitable pseudo-differential operator. Feller processes, Hunt processes associated with Lp-sub-Markovian semigroups and processes constructed by using the Martingale problem are at the center of the considerations. The potential theory of these processes is further developed and applications are discussed. Due to the non-locality of the generators, the processes are jump processes and their relations to Levy processes are investigated. Special emphasis is given to the symbol of a process, a notion which generalizes that of the characteristic exponent of a Levy process and provides a natural link to pseudo-differential operator theory.
Book Synopsis Pseudo Differential Operators And Markov Processes, Volume I: Fourier Analysis And Semigroups by : Niels Jacob
Download or read book Pseudo Differential Operators And Markov Processes, Volume I: Fourier Analysis And Semigroups written by Niels Jacob and published by World Scientific. This book was released on 2001-11-28 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: After recalling essentials of analysis — including functional analysis, convexity, distribution theory and interpolation theory — this book handles two topics in detail: Fourier analysis, with emphasis on positivity and also on some function spaces and multiplier theorems; and one-parameter operator semigroups with emphasis on Feller semigroups and Lp-sub-Markovian semigroups. In addition, Dirichlet forms are treated. The book is self-contained and offers new material originated by the author and his students./a
Book Synopsis Pseudo Differential Operators And Markov Processes, Volume Ii: Generators And Their Potential Theory by : Niels Jacob
Download or read book Pseudo Differential Operators And Markov Processes, Volume Ii: Generators And Their Potential Theory written by Niels Jacob and published by World Scientific. This book was released on 2002-07-19 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume two topics are discussed: the construction of Feller and Lp-sub-Markovian semigroups by starting with a pseudo-differential operator, and the potential theory of these semigroups and their generators. The first part of the text essentially discusses the analysis of pseudo-differential operators with negative definite symbols and develops a symbolic calculus; in addition, it deals with special approaches, such as subordination in the sense of Bochner. The second part handles capacities, function spaces associated with continuous negative definite functions, Lp -sub-Markovian semigroups in their associated Bessel potential spaces, Stein's Littlewood-Paley theory, global properties of Lp-sub-Markovian semigroups, and estimates for transition functions.
Book Synopsis Pseudo Differential Operators and Markov Processes by : Niels Jacob
Download or read book Pseudo Differential Operators and Markov Processes written by Niels Jacob and published by World Scientific. This book was released on 2001 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: After recalling essentials of analysis OCo including functional analysis, convexity, distribution theory and interpolation theory OCo this book handles two topics in detail: Fourier analysis, with emphasis on positivity and also on some function spaces and multiplier theorems; and one-parameter operator semigroups with emphasis on Feller semigroups and Lp-sub-Markovian semigroups. In addition, Dirichlet forms are treated. The book is self-contained and offers new material originated by the author and his students. Sample Chapter(s). Introduction: Pseudo Differential Operators and Markov Processes (207 KB). Chapter 1: Introduction (190 KB). Contents: Essentials from Analysis: Calculus Results; Convexity; Some Interpolation Theory; Fourier Analysis and Convolution Semigroups: The PaleyOCoWienerOCoSchwartz Theorem; Bounded Borel Measures and Positive Definite Functions; Convolution Semigroups and Negative Definite Functions; The L(r)vyOCoKhinchin Formula for Continuous Negative Definite Functions; Bernstein Functions and Subordination of Convolution Semigroups; Fourier Multiplier Theorems; One Parameter Semigroups: Strongly Continuous Operator Semigroups; Subordination in the Sense of Bochner for Operator Semigroups; Generators of Feller Semigroups; Dirichlet Forms and Generators of Sub-Markovian Semigroups; and other papers. Readership: Graduate students, researchers and lecturers in analysis & differential equations, stochastics, probability & statistics, and mathematical physics."
Book Synopsis High Dimensional Probability by : Evarist Giné
Download or read book High Dimensional Probability written by Evarist Giné and published by IMS. This book was released on 2006 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Structured Dependence between Stochastic Processes by : Tomasz R. Bielecki
Download or read book Structured Dependence between Stochastic Processes written by Tomasz R. Bielecki and published by Cambridge University Press. This book was released on 2020-08-27 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The relatively young theory of structured dependence between stochastic processes has many real-life applications in areas including finance, insurance, seismology, neuroscience, and genetics. With this monograph, the first to be devoted to the modeling of structured dependence between random processes, the authors not only meet the demand for a solid theoretical account but also develop a stochastic processes counterpart of the classical copula theory that exists for finite-dimensional random variables. Presenting both the technical aspects and the applications of the theory, this is a valuable reference for researchers and practitioners in the field, as well as for graduate students in pure and applied mathematics programs. Numerous theoretical examples are included, alongside examples of both current and potential applications, aimed at helping those who need to model structured dependence between dynamic random phenomena.
Book Synopsis Markov Processes, Feller Semigroups and Evolution Equations by : J. A. van Casteren
Download or read book Markov Processes, Feller Semigroups and Evolution Equations written by J. A. van Casteren and published by World Scientific. This book was released on 2011 with total page 825 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a systemic treatment of time-dependent strong Markov processes with values in a Polish space. It describes its generators and the link with stochastic differential equations in infinite dimensions. In a unifying way, where the square gradient operator is employed, new results for backward stochastic differential equations and long-time behavior are discussed in depth. The book also establishes a link between propagators or evolution families with the Feller property and time-inhomogeneous Markov processes. This mathematical material finds its applications in several branches of the scientific world, among which are mathematical physics, hedging models in financial mathematics, and population models.
Book Synopsis Semigroups, Boundary Value Problems and Markov Processes by : Kazuaki Taira
Download or read book Semigroups, Boundary Value Problems and Markov Processes written by Kazuaki Taira and published by Springer. This book was released on 2014-08-07 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: A careful and accessible exposition of functional analytic methods in stochastic analysis is provided in this book. It focuses on the interrelationship between three subjects in analysis: Markov processes, semi groups and elliptic boundary value problems. The author studies a general class of elliptic boundary value problems for second-order, Waldenfels integro-differential operators in partial differential equations and proves that this class of elliptic boundary value problems provides a general class of Feller semigroups in functional analysis. As an application, the author constructs a general class of Markov processes in probability in which a Markovian particle moves both by jumps and continuously in the state space until it 'dies' at the time when it reaches the set where the particle is definitely absorbed. Augmenting the 1st edition published in 2004, this edition includes four new chapters and eight re-worked and expanded chapters. It is amply illustrated and all chapters are rounded off with Notes and Comments where bibliographical references are primarily discussed. Thanks to the kind feedback from many readers, some errors in the first edition have been corrected. In order to keep the book up-to-date, new references have been added to the bibliography. Researchers and graduate students interested in PDEs, functional analysis and probability will find this volume useful.
Book Synopsis Fractional Differential Equations by : Anatoly Kochubei
Download or read book Fractional Differential Equations written by Anatoly Kochubei and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-02-19 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.
Book Synopsis Hyperfinite Dirichlet Forms and Stochastic Processes by : Sergio Albeverio
Download or read book Hyperfinite Dirichlet Forms and Stochastic Processes written by Sergio Albeverio and published by Springer Science & Business Media. This book was released on 2011-05-27 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph treats the theory of Dirichlet forms from a comprehensive point of view, using "nonstandard analysis." Thus, it is close in spirit to the discrete classical formulation of Dirichlet space theory by Beurling and Deny (1958). The discrete infinitesimal setup makes it possible to study the diffusion and the jump part using essentially the same methods. This setting has the advantage of being independent of special topological properties of the state space and in this sense is a natural one, valid for both finite- and infinite-dimensional spaces. The present monograph provides a thorough treatment of the symmetric as well as the non-symmetric case, surveys the theory of hyperfinite Lévy processes, and summarizes in an epilogue the model-theoretic genericity of hyperfinite stochastic processes theory.
Book Synopsis Nonlinear Markov Processes and Kinetic Equations by : Vassili N. Kolokoltsov
Download or read book Nonlinear Markov Processes and Kinetic Equations written by Vassili N. Kolokoltsov and published by Cambridge University Press. This book was released on 2010-07-15 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: A nonlinear Markov evolution is a dynamical system generated by a measure-valued ordinary differential equation with the specific feature of preserving positivity. This feature distinguishes it from general vector-valued differential equations and yields a natural link with probability, both in interpreting results and in the tools of analysis. This brilliant book, the first devoted to the area, develops this interplay between probability and analysis. After systematically presenting both analytic and probabilistic techniques, the author uses probability to obtain deeper insight into nonlinear dynamics, and analysis to tackle difficult problems in the description of random and chaotic behavior. The book addresses the most fundamental questions in the theory of nonlinear Markov processes: existence, uniqueness, constructions, approximation schemes, regularity, law of large numbers and probabilistic interpretations. Its careful exposition makes the book accessible to researchers and graduate students in stochastic and functional analysis with applications to mathematical physics and systems biology.
Book Synopsis Introduction to Fractional and Pseudo-Differential Equations with Singular Symbols by : Sabir Umarov
Download or read book Introduction to Fractional and Pseudo-Differential Equations with Singular Symbols written by Sabir Umarov and published by Springer. This book was released on 2015-08-18 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book systematically presents the theories of pseudo-differential operators with symbols singular in dual variables, fractional order derivatives, distributed and variable order fractional derivatives, random walk approximants, and applications of these theories to various initial and multi-point boundary value problems for pseudo-differential equations. Fractional Fokker-Planck-Kolmogorov equations associated with a large class of stochastic processes are presented. A complex version of the theory of pseudo-differential operators with meromorphic symbols based on the recently introduced complex Fourier transform is developed and applied for initial and boundary value problems for systems of complex differential and pseudo-differential equations.
Book Synopsis Analysis of Pseudo-Differential Operators by : Shahla Molahajloo
Download or read book Analysis of Pseudo-Differential Operators written by Shahla Molahajloo and published by Springer. This book was released on 2019-05-08 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, like its predecessors, is based on the special session on pseudo-differential operators, one of the many special sessions at the 11th ISAAC Congress, held at Linnaeus University in Sweden on August 14-18, 2017. It includes research papers presented at the session and invited papers by experts in fields that involve pseudo-differential operators. The first four chapters focus on the functional analysis of pseudo-differential operators on a spectrum of settings from Z to Rn to compact groups. Chapters 5 and 6 discuss operators on Lie groups and manifolds with edge, while the following two chapters cover topics related to probabilities. The final chapters then address topics in differential equations.
Book Synopsis Lévy Matters III by : Björn Böttcher
Download or read book Lévy Matters III written by Björn Böttcher and published by Springer. This book was released on 2014-01-16 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents recent developments in the area of Lévy-type processes and more general stochastic processes that behave locally like a Lévy process. Although written in a survey style, quite a few results are extensions of known theorems, and others are completely new. The focus is on the symbol of a Lévy-type process: a non-random function which is a counterpart of the characteristic exponent of a Lévy process. The class of stochastic processes which can be associated with a symbol is characterized, various schemes constructing a stochastic process from a given symbol are discussed, and it is shown how one can use the symbol in order to describe the sample path properties of the underlying process. Lastly, the symbol is used to approximate and simulate Levy-type processes. This is the third volume in a subseries of the Lecture Notes in Mathematics called Lévy Matters. Each volume describes a number of important topics in the theory or applications of Lévy processes and pays tribute to the state of the art of this rapidly evolving subject with special emphasis on the non-Brownian world.
Download or read book Lévy Matters VI written by Franziska Kühn and published by Springer. This book was released on 2017-10-05 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting some recent results on the construction and the moments of Lévy-type processes, the focus of this volume is on a new existence theorem, which is proved using a parametrix construction. Applications range from heat kernel estimates for a class of Lévy-type processes to existence and uniqueness theorems for Lévy-driven stochastic differential equations with Hölder continuous coefficients. Moreover, necessary and sufficient conditions for the existence of moments of Lévy-type processes are studied and some estimates on moments are derived. Lévy-type processes behave locally like Lévy processes but, in contrast to Lévy processes, they are not homogeneous in space. Typical examples are processes with varying index of stability and solutions of Lévy-driven stochastic differential equations. This is the sixth volume in a subseries of the Lecture Notes in Mathematics called Lévy Matters. Each volume describes a number of important topics in the theory or applications of Lévy processes and pays tribute to the state of the art of this rapidly evolving subject, with special emphasis on the non-Brownian world.