Projective Differential Geometry of Curves and Surfaces

Download Projective Differential Geometry of Curves and Surfaces PDF Online Free

Author :
Publisher : Porter Press
ISBN 13 : 1406747165
Total Pages : 332 pages
Book Rating : 4.4/5 (67 download)

DOWNLOAD NOW!


Book Synopsis Projective Differential Geometry of Curves and Surfaces by : Ernest Preston Lane

Download or read book Projective Differential Geometry of Curves and Surfaces written by Ernest Preston Lane and published by Porter Press. This book was released on 2007-03 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: PREFACE. THE Author of this very practical treatise on Scotch Loch - Fishing desires clearly that it may be of use to all who had it. He does not pretend to have written anything new, but to have attempted to put what he has to say in as readable a form as possible. Everything in the way of the history and habits of fish has been studiously avoided, and technicalities have been used as sparingly as possible. The writing of this book has afforded him pleasure in his leisure moments, and that pleasure would be much increased if he knew that the perusal of it would create any bond of sympathy between himself and the angling community in general. This section is interleaved with blank shects for the readers notes. The Author need hardly say that any suggestions addressed to the case of the publishers, will meet with consideration in a future edition. We do not pretend to write or enlarge upon a new subject. Much has been said and written-and well said and written too on the art of fishing but loch-fishing has been rather looked upon as a second-rate performance, and to dispel this idea is one of the objects for which this present treatise has been written. Far be it from us to say anything against fishing, lawfully practised in any form but many pent up in our large towns will bear us out when me say that, on the whole, a days loch-fishing is the most convenient. One great matter is, that the loch-fisher is depend- ent on nothing but enough wind to curl the water, -and on a large loch it is very seldom that a dead calm prevails all day, -and can make his arrangements for a day, weeks beforehand whereas the stream- fisher is dependent for a good take on the state of the water and however pleasant and easy it may be for one living near the banks of a good trout stream or river, it is quite another matter to arrange for a days river-fishing, if one is looking forward to a holiday at a date some weeks ahead. Providence may favour the expectant angler with a good day, and the water in order but experience has taught most of us that the good days are in the minority, and that, as is the case with our rapid running streams, -such as many of our northern streams are, -the water is either too large or too small, unless, as previously remarked, you live near at hand, and can catch it at its best. A common belief in regard to loch-fishing is, that the tyro and the experienced angler have nearly the same chance in fishing, -the one from the stern and the other from the bow of the same boat. Of all the absurd beliefs as to loch-fishing, this is one of the most absurd. Try it. Give the tyro either end of the boat he likes give him a cast of ally flies he may fancy, or even a cast similar to those which a crack may be using and if he catches one for every three the other has, he may consider himself very lucky. Of course there are lochs where the fish are not abundant, and a beginner may come across as many as an older fisher but we speak of lochs where there are fish to be caught, and where each has a fair chance. Again, it is said that the boatman has as much to do with catching trout in a loch as the angler. Well, we dont deny that. In an untried loch it is necessary to have the guidance of a good boatman but the same argument holds good as to stream-fishing...

Projective differential geometry of curves and ruled surfaces

Download Projective differential geometry of curves and ruled surfaces PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 322 pages
Book Rating : 4.A/5 ( download)

DOWNLOAD NOW!


Book Synopsis Projective differential geometry of curves and ruled surfaces by : Ernest Julius Wilczynski

Download or read book Projective differential geometry of curves and ruled surfaces written by Ernest Julius Wilczynski and published by . This book was released on 1906 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Modern Differential Geometry of Curves and Surfaces with Mathematica

Download Modern Differential Geometry of Curves and Surfaces with Mathematica PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351992201
Total Pages : 1024 pages
Book Rating : 4.3/5 (519 download)

DOWNLOAD NOW!


Book Synopsis Modern Differential Geometry of Curves and Surfaces with Mathematica by : Elsa Abbena

Download or read book Modern Differential Geometry of Curves and Surfaces with Mathematica written by Elsa Abbena and published by CRC Press. This book was released on 2017-09-06 with total page 1024 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting theory while using Mathematica in a complementary way, Modern Differential Geometry of Curves and Surfaces with Mathematica, the third edition of Alfred Gray’s famous textbook, covers how to define and compute standard geometric functions using Mathematica for constructing new curves and surfaces from existing ones. Since Gray’s death, authors Abbena and Salamon have stepped in to bring the book up to date. While maintaining Gray's intuitive approach, they reorganized the material to provide a clearer division between the text and the Mathematica code and added a Mathematica notebook as an appendix to each chapter. They also address important new topics, such as quaternions. The approach of this book is at times more computational than is usual for a book on the subject. For example, Brioshi’s formula for the Gaussian curvature in terms of the first fundamental form can be too complicated for use in hand calculations, but Mathematica handles it easily, either through computations or through graphing curvature. Another part of Mathematica that can be used effectively in differential geometry is its special function library, where nonstandard spaces of constant curvature can be defined in terms of elliptic functions and then plotted. Using the techniques described in this book, readers will understand concepts geometrically, plotting curves and surfaces on a monitor and then printing them. Containing more than 300 illustrations, the book demonstrates how to use Mathematica to plot many interesting curves and surfaces. Including as many topics of the classical differential geometry and surfaces as possible, it highlights important theorems with many examples. It includes 300 miniprograms for computing and plotting various geometric objects, alleviating the drudgery of computing things such as the curvature and torsion of a curve in space.

Differential Geometry of Curves and Surfaces

Download Differential Geometry of Curves and Surfaces PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811517398
Total Pages : 192 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry of Curves and Surfaces by : Shoshichi Kobayashi

Download or read book Differential Geometry of Curves and Surfaces written by Shoshichi Kobayashi and published by Springer Nature. This book was released on 2019-11-13 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. Berkeley for 50 years, recently translated by Eriko Shinozaki Nagumo and Makiko Sumi Tanaka. There are five chapters: 1. Plane Curves and Space Curves; 2. Local Theory of Surfaces in Space; 3. Geometry of Surfaces; 4. Gauss–Bonnet Theorem; and 5. Minimal Surfaces. Chapter 1 discusses local and global properties of planar curves and curves in space. Chapter 2 deals with local properties of surfaces in 3-dimensional Euclidean space. Two types of curvatures — the Gaussian curvature K and the mean curvature H —are introduced. The method of the moving frames, a standard technique in differential geometry, is introduced in the context of a surface in 3-dimensional Euclidean space. In Chapter 3, the Riemannian metric on a surface is introduced and properties determined only by the first fundamental form are discussed. The concept of a geodesic introduced in Chapter 2 is extensively discussed, and several examples of geodesics are presented with illustrations. Chapter 4 starts with a simple and elegant proof of Stokes’ theorem for a domain. Then the Gauss–Bonnet theorem, the major topic of this book, is discussed at great length. The theorem is a most beautiful and deep result in differential geometry. It yields a relation between the integral of the Gaussian curvature over a given oriented closed surface S and the topology of S in terms of its Euler number χ(S). Here again, many illustrations are provided to facilitate the reader’s understanding. Chapter 5, Minimal Surfaces, requires some elementary knowledge of complex analysis. However, the author retained the introductory nature of this book and focused on detailed explanations of the examples of minimal surfaces given in Chapter 2.

Algebraic Curves and Riemann Surfaces

Download Algebraic Curves and Riemann Surfaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821802682
Total Pages : 414 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Curves and Riemann Surfaces by : Rick Miranda

Download or read book Algebraic Curves and Riemann Surfaces written by Rick Miranda and published by American Mathematical Soc.. This book was released on 1995 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.

Shape Interrogation for Computer Aided Design and Manufacturing

Download Shape Interrogation for Computer Aided Design and Manufacturing PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540424543
Total Pages : 428 pages
Book Rating : 4.4/5 (245 download)

DOWNLOAD NOW!


Book Synopsis Shape Interrogation for Computer Aided Design and Manufacturing by : Nicholas M. Patrikalakis

Download or read book Shape Interrogation for Computer Aided Design and Manufacturing written by Nicholas M. Patrikalakis and published by Springer Science & Business Media. This book was released on 2002-02-14 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shape interrogation is the process of extraction of information from a geometric model. It is a fundamental component of Computer Aided Design and Manufacturing (CAD/CAM) systems. The authors focus on shape interrogation of geometric models bounded by free-form surfaces. Free-form surfaces, also called sculptured surfaces, are widely used in the bodies of ships, automobiles and aircraft, which have both functionality and attractive shape requirements. Many electronic devices as well as consumer products are designed with aesthetic shapes, which involve free-form surfaces. This book provides the mathematical fundamentals as well as algorithms for various shape interrogation methods including nonlinear polynomial solvers, intersection problems, differential geometry of intersection curves, distance functions, curve and surface interrogation, umbilics and lines of curvature, geodesics, and offset curves and surfaces. This book will be of interest both to graduate students and professionals.

Circular of Information

Download Circular of Information PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 292 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Circular of Information by : University of Chicago

Download or read book Circular of Information written by University of Chicago and published by . This book was released on 1919 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Projective Differential Geometry of Submanifolds

Download Projective Differential Geometry of Submanifolds PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080887163
Total Pages : 375 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Projective Differential Geometry of Submanifolds by : M.A. Akivis

Download or read book Projective Differential Geometry of Submanifolds written by M.A. Akivis and published by Elsevier. This book was released on 1993-06-30 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the general theory of submanifolds in a multidimensional projective space is constructed. The topics dealt with include osculating spaces and fundamental forms of different orders, asymptotic and conjugate lines, submanifolds on the Grassmannians, different aspects of the normalization problems for submanifolds (with special emphasis given to a connection in the normal bundle) and the problem of algebraizability for different kinds of submanifolds, the geometry of hypersurfaces and hyperbands, etc. A series of special types of submanifolds with special projective structures are studied: submanifolds carrying a net of conjugate lines (in particular, conjugate systems), tangentially degenerate submanifolds, submanifolds with asymptotic and conjugate distributions etc. The method of moving frames and the apparatus of exterior differential forms are systematically used in the book and the results presented can be applied to the problems dealing with the linear subspaces or their generalizations.Graduate students majoring in differential geometry will find this monograph of great interest, as will researchers in differential and algebraic geometry, complex analysis and theory of several complex variables.

Geometry of Curves

Download Geometry of Curves PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781584881667
Total Pages : 384 pages
Book Rating : 4.8/5 (816 download)

DOWNLOAD NOW!


Book Synopsis Geometry of Curves by : J.W. Rutter

Download or read book Geometry of Curves written by J.W. Rutter and published by CRC Press. This book was released on 2000-02-23 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in the study of geometry is currently enjoying a resurgence-understandably so, as the study of curves was once the playground of some very great mathematicians. However, many of the subject's more exciting aspects require a somewhat advanced mathematics background. For the "fun stuff" to be accessible, we need to offer students an introduction with modest prerequisites, one that stimulates their interest and focuses on problem solving. Integrating parametric, algebraic, and projective curves into a single text, Geometry of Curves offers students a unique approach that provides a mathematical structure for solving problems, not just a catalog of theorems. The author begins with the basics, then takes students on a fascinating journey from conics, higher algebraic and transcendental curves, through the properties of parametric curves, the classification of limaçons, envelopes, and finally to projective curves, their relationship to algebraic curves, and their application to asymptotes and boundedness. The uniqueness of this treatment lies in its integration of the different types of curves, its use of analytic methods, and its generous number of examples, exercises, and illustrations. The result is a practical text, almost entirely self-contained, that not only imparts a deeper understanding of the theory, but inspires a heightened appreciation of geometry and interest in more advanced studies.

Visual Motion of Curves and Surfaces

Download Visual Motion of Curves and Surfaces PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521632515
Total Pages : 200 pages
Book Rating : 4.6/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Visual Motion of Curves and Surfaces by : Roberto Cipolla

Download or read book Visual Motion of Curves and Surfaces written by Roberto Cipolla and published by Cambridge University Press. This book was released on 2000 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision aims to detect and reconstruct features of surfaces from the images produced by cameras, in some way mimicking the way in which humans reconstruct features of the world around them by using their eyes. In this book the authors describe research in computer vision aimed at recovering the 3D shape of surfaces from image sequences of their 'outlines'. They provide all the necessary background in differential geometry (assuming knowledge of elementary algebra and calculus) and in the analysis of visual motion, emphasising intuitive visual understanding of the geometric techniques with computer-generated illustrations. They also give a thorough introduction to the mathematical techniques and the details of the implementations and apply the methods to data from real images using the most current techniques.

Differential Geometry

Download Differential Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030922499
Total Pages : 278 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry by : Victor V. Prasolov

Download or read book Differential Geometry written by Victor V. Prasolov and published by Springer Nature. This book was released on 2022-02-10 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book combines the classical and contemporary approaches to differential geometry. An introduction to the Riemannian geometry of manifolds is preceded by a detailed discussion of properties of curves and surfaces. The chapter on the differential geometry of plane curves considers local and global properties of curves, evolutes and involutes, and affine and projective differential geometry. Various approaches to Gaussian curvature for surfaces are discussed. The curvature tensor, conjugate points, and the Laplace-Beltrami operator are first considered in detail for two-dimensional surfaces, which facilitates studying them in the many-dimensional case. A separate chapter is devoted to the differential geometry of Lie groups.

Cartan for Beginners

Download Cartan for Beginners PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821833758
Total Pages : 394 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Cartan for Beginners by : Thomas Andrew Ivey

Download or read book Cartan for Beginners written by Thomas Andrew Ivey and published by American Mathematical Soc.. This book was released on 2003 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.

Differential Geometry: Manifolds, Curves, and Surfaces

Download Differential Geometry: Manifolds, Curves, and Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146121033X
Total Pages : 487 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Differential Geometry: Manifolds, Curves, and Surfaces by : Marcel Berger

Download or read book Differential Geometry: Manifolds, Curves, and Surfaces written by Marcel Berger and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of two parts, different in form but similar in spirit. The first, which comprises chapters 0 through 9, is a revised and somewhat enlarged version of the 1972 book Geometrie Differentielle. The second part, chapters 10 and 11, is an attempt to remedy the notorious absence in the original book of any treatment of surfaces in three-space, an omission all the more unforgivable in that surfaces are some of the most common geometrical objects, not only in mathematics but in many branches of physics. Geometrie Differentielle was based on a course I taught in Paris in 1969- 70 and again in 1970-71. In designing this course I was decisively influ enced by a conversation with Serge Lang, and I let myself be guided by three general ideas. First, to avoid making the statement and proof of Stokes' formula the climax of the course and running out of time before any of its applications could be discussed. Second, to illustrate each new notion with non-trivial examples, as soon as possible after its introduc tion. And finally, to familiarize geometry-oriented students with analysis and analysis-oriented students with geometry, at least in what concerns manifolds.

Introduction to Differential Geometry

Download Introduction to Differential Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3662643405
Total Pages : 426 pages
Book Rating : 4.6/5 (626 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Differential Geometry by : Joel W. Robbin

Download or read book Introduction to Differential Geometry written by Joel W. Robbin and published by Springer Nature. This book was released on 2022-01-12 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Projective Differential Geometry Old and New

Download Projective Differential Geometry Old and New PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9781139455916
Total Pages : 276 pages
Book Rating : 4.4/5 (559 download)

DOWNLOAD NOW!


Book Synopsis Projective Differential Geometry Old and New by : V. Ovsienko

Download or read book Projective Differential Geometry Old and New written by V. Ovsienko and published by Cambridge University Press. This book was released on 2004-12-13 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ideas of projective geometry keep reappearing in seemingly unrelated fields of mathematics. The authors' main goal in this 2005 book is to emphasize connections between classical projective differential geometry and contemporary mathematics and mathematical physics. They also give results and proofs of classic theorems. Exercises play a prominent role: historical and cultural comments set the basic notions in a broader context. The book opens by discussing the Schwarzian derivative and its connection to the Virasoro algebra. One-dimensional projective differential geometry features strongly. Related topics include differential operators, the cohomology of the group of diffeomorphisms of the circle, and the classical four-vertex theorem. The classical theory of projective hypersurfaces is surveyed and related to some very recent results and conjectures. A final chapter considers various versions of multi-dimensional Schwarzian derivative. In sum, here is a rapid route for graduate students and researchers to the frontiers of current research in this evergreen subject.

A Treatise on the Differential Geometry of Curves and Surfaces

Download A Treatise on the Differential Geometry of Curves and Surfaces PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 500 pages
Book Rating : 4.A/5 ( download)

DOWNLOAD NOW!


Book Synopsis A Treatise on the Differential Geometry of Curves and Surfaces by : Luther Pfahler Eisenhart

Download or read book A Treatise on the Differential Geometry of Curves and Surfaces written by Luther Pfahler Eisenhart and published by . This book was released on 1909 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Treatise on the Differential Geometry of Curves and Surfaces by Luther Pfahler Eisenhart, first published in 1909, is a rare manuscript, the original residing in one of the great libraries of the world. This book is a reproduction of that original, which has been scanned and cleaned by state-of-the-art publishing tools for better readability and enhanced appreciation. Restoration Editors' mission is to bring long out of print manuscripts back to life. Some smudges, annotations or unclear text may still exist, due to permanent damage to the original work. We believe the literary significance of the text justifies offering this reproduction, allowing a new generation to appreciate it.

Topological, Differential and Conformal Geometry of Surfaces

Download Topological, Differential and Conformal Geometry of Surfaces PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030890325
Total Pages : 282 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Topological, Differential and Conformal Geometry of Surfaces by : Norbert A'Campo

Download or read book Topological, Differential and Conformal Geometry of Surfaces written by Norbert A'Campo and published by Springer Nature. This book was released on 2021-10-27 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincaré Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes’ Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss–Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow’s Theorem on compact holomorphic submanifolds in complex projective spaces. Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.