Complex Cobordism and Stable Homotopy Groups of Spheres

Download Complex Cobordism and Stable Homotopy Groups of Spheres PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 082182967X
Total Pages : 418 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Complex Cobordism and Stable Homotopy Groups of Spheres by : Douglas C. Ravenel

Download or read book Complex Cobordism and Stable Homotopy Groups of Spheres written by Douglas C. Ravenel and published by American Mathematical Soc.. This book was released on 2003-11-25 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.

Primary Homotopy Theory

Download Primary Homotopy Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821822322
Total Pages : 73 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Primary Homotopy Theory by : Joseph Neisendorfer

Download or read book Primary Homotopy Theory written by Joseph Neisendorfer and published by American Mathematical Soc.. This book was released on 1980 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author gives a systematic exposition of homotopy groups with coefficients in a cyclic group [italic]Z or [italic]Z[subscript italic]k. The text pays particular attention to low-dimensional cases and trouble with the small primes. The book gives a complete treatment of some topics--such as Samelson products--with a view toward applications.

Foundations of Stable Homotopy Theory

Download Foundations of Stable Homotopy Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108672671
Total Pages : 432 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Stable Homotopy Theory by : David Barnes

Download or read book Foundations of Stable Homotopy Theory written by David Barnes and published by Cambridge University Press. This book was released on 2020-03-26 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The beginning graduate student in homotopy theory is confronted with a vast literature on spectra that is scattered across books, articles and decades. There is much folklore but very few easy entry points. This comprehensive introduction to stable homotopy theory changes that. It presents the foundations of the subject together in one place for the first time, from the motivating phenomena to the modern theory, at a level suitable for those with only a first course in algebraic topology. Starting from stable homotopy groups and (co)homology theories, the authors study the most important categories of spectra and the stable homotopy category, before moving on to computational aspects and more advanced topics such as monoidal structures, localisations and chromatic homotopy theory. The appendix containing essential facts on model categories, the numerous examples and the suggestions for further reading make this a friendly introduction to an often daunting subject.

Nilpotence and Periodicity in Stable Homotopy Theory

Download Nilpotence and Periodicity in Stable Homotopy Theory PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691025728
Total Pages : 228 pages
Book Rating : 4.0/5 (257 download)

DOWNLOAD NOW!


Book Synopsis Nilpotence and Periodicity in Stable Homotopy Theory by : Douglas C. Ravenel

Download or read book Nilpotence and Periodicity in Stable Homotopy Theory written by Douglas C. Ravenel and published by Princeton University Press. This book was released on 1992-11-08 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.

Algebraic Methods in Unstable Homotopy Theory

Download Algebraic Methods in Unstable Homotopy Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139482599
Total Pages : 575 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Methods in Unstable Homotopy Theory by : Joseph Neisendorfer

Download or read book Algebraic Methods in Unstable Homotopy Theory written by Joseph Neisendorfer and published by Cambridge University Press. This book was released on 2010-02-18 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most modern and thorough treatment of unstable homotopy theory available. The focus is on those methods from algebraic topology which are needed in the presentation of results, proven by Cohen, Moore, and the author, on the exponents of homotopy groups. The author introduces various aspects of unstable homotopy theory, including: homotopy groups with coefficients; localization and completion; the Hopf invariants of Hilton, James, and Toda; Samelson products; homotopy Bockstein spectral sequences; graded Lie algebras; differential homological algebra; and the exponent theorems concerning the homotopy groups of spheres and Moore spaces. This book is suitable for a course in unstable homotopy theory, following a first course in homotopy theory. It is also a valuable reference for both experts and graduate students wishing to enter the field.

Modern Classical Homotopy Theory

Download Modern Classical Homotopy Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821852868
Total Pages : 862 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Modern Classical Homotopy Theory by : Jeffrey Strom

Download or read book Modern Classical Homotopy Theory written by Jeffrey Strom and published by American Mathematical Soc.. This book was released on 2011-10-19 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt: The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

Homotopy Type Theory: Univalent Foundations of Mathematics

Download Homotopy Type Theory: Univalent Foundations of Mathematics PDF Online Free

Author :
Publisher : Univalent Foundations
ISBN 13 :
Total Pages : 484 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Homotopy Type Theory: Univalent Foundations of Mathematics by :

Download or read book Homotopy Type Theory: Univalent Foundations of Mathematics written by and published by Univalent Foundations. This book was released on with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Homotopy Theory of Schemes

Download Homotopy Theory of Schemes PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821831649
Total Pages : 116 pages
Book Rating : 4.8/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Homotopy Theory of Schemes by : Fabien Morel

Download or read book Homotopy Theory of Schemes written by Fabien Morel and published by American Mathematical Soc.. This book was released on 2006 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this text, the author presents a general framework for applying the standard methods from homotopy theory to the category of smooth schemes over a reasonable base scheme $k$. He defines the homotopy category $h(\mathcal{E} k)$ of smooth $k$-schemes and shows that it plays the same role for smooth $k$-schemes as the classical homotopy category plays for differentiable varieties. It is shown that certain expected properties are satisfied, for example, concerning the algebraic$K$-theory of those schemes. In this way, advanced methods of algebraic topology become available in modern algebraic geometry.

Simplicial Homotopy Theory

Download Simplicial Homotopy Theory PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034887078
Total Pages : 520 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Simplicial Homotopy Theory by : Paul G. Goerss

Download or read book Simplicial Homotopy Theory written by Paul G. Goerss and published by Birkhäuser. This book was released on 2012-12-06 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the beginning of the modern era of algebraic topology, simplicial methods have been used systematically and effectively for both computation and basic theory. With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, this collection of methods has become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in a variety of fields, including algebraic K-theory. This book supplies a modern exposition of these ideas, emphasizing model category theoretical techniques. Discussed here are the homotopy theory of simplicial sets, and other basic topics such as simplicial groups, Postnikov towers, and bisimplicial sets. The more advanced material includes homotopy limits and colimits, localization with respect to a map and with respect to a homology theory, cosimplicial spaces, and homotopy coherence. Interspersed throughout are many results and ideas well-known to experts, but uncollected in the literature. Intended for second-year graduate students and beyond, this book introduces many of the basic tools of modern homotopy theory. An extensive background in topology is not assumed.

Axiomatic Stable Homotopy Theory

Download Axiomatic Stable Homotopy Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821806246
Total Pages : 130 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Axiomatic Stable Homotopy Theory by : Mark Hovey

Download or read book Axiomatic Stable Homotopy Theory written by Mark Hovey and published by American Mathematical Soc.. This book was released on 1997 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: We define and investigate a class of categories with formal properties similar to those of the homotopy category of spectra. This class includes suitable versions of the derived category of modules over a commutative ring, or of comodules over a commutative Hopf algebra, and is closed under Bousfield localization. We study various notions of smallness, questions about representability of (co)homology functors, and various kinds of localization. We prove theorems analogous to those of Hopkins and Smith about detection of nilpotence and classification of thick subcategories. We define the class of Noetherian stable homotopy categories, and investigate their special properties. Finally, we prove that a number of categories occurring in nature (including those mentioned above) satisfy our axioms.

Stable Homotopy Groups of Spheres

Download Stable Homotopy Groups of Spheres PDF Online Free

Author :
Publisher :
ISBN 13 : 9780894644719
Total Pages : 330 pages
Book Rating : 4.6/5 (447 download)

DOWNLOAD NOW!


Book Synopsis Stable Homotopy Groups of Spheres by :

Download or read book Stable Homotopy Groups of Spheres written by and published by . This book was released on 1990 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Categorical Homotopy Theory

Download Categorical Homotopy Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139952633
Total Pages : 371 pages
Book Rating : 4.1/5 (399 download)

DOWNLOAD NOW!


Book Synopsis Categorical Homotopy Theory by : Emily Riehl

Download or read book Categorical Homotopy Theory written by Emily Riehl and published by Cambridge University Press. This book was released on 2014-05-26 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.

Introduction to Homotopy Theory

Download Introduction to Homotopy Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821844366
Total Pages : 220 pages
Book Rating : 4.8/5 (443 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Homotopy Theory by : Paul Selick

Download or read book Introduction to Homotopy Theory written by Paul Selick and published by American Mathematical Soc.. This book was released on 2008 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a summary for students and non-specialists who are interested in learning the basics of algebraic topology. This book covers fibrations and cofibrations, Hurewicz and cellular approximation theorems, topics in classical homotopy theory, simplicial sets, fiber bundles, Hopf algebras, and generalized homology and cohomology operations.

Equivariant Homotopy and Cohomology Theory

Download Equivariant Homotopy and Cohomology Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821803190
Total Pages : 384 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Equivariant Homotopy and Cohomology Theory by : J. Peter May

Download or read book Equivariant Homotopy and Cohomology Theory written by J. Peter May and published by American Mathematical Soc.. This book was released on 1996 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume introduces equivariant homotopy, homology, and cohomology theory, along with various related topics in modern algebraic topology. It explains the main ideas behind some of the most striking recent advances in the subject. The works begins with a development of the equivariant algebraic topology of spaces culminating in a discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith theory. The book then introduces equivariant stable homotopy theory, the equivariant stable homotopy category, and the most important examples of equivariant cohomology theories. The basic machinery that is needed to make serious use of equivariant stable homotopy theory is presented next, along with discussions of the Segal conjecture and generalized Tate cohomology. Finally, the book gives an introduction to "brave new algebra", the study of point-set level algebraic structures on spectra and its equivariant applications. Emphasis is placed on equivariant complex cobordism, and related results on that topic are presented in detail.

Model Categories and Their Localizations

Download Model Categories and Their Localizations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821849174
Total Pages : 482 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Model Categories and Their Localizations by : Philip S. Hirschhorn

Download or read book Model Categories and Their Localizations written by Philip S. Hirschhorn and published by American Mathematical Soc.. This book was released on 2003 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to explain modern homotopy theory in a manner accessible to graduate students yet structured so that experts can skip over numerous linear developments to quickly reach the topics of their interest. Homotopy theory arises from choosing a class of maps, called weak equivalences, and then passing to the homotopy category by localizing with respect to the weak equivalences, i.e., by creating a new category in which the weak equivalences are isomorphisms. Quillen defined a model category to be a category together with a class of weak equivalences and additional structure useful for describing the homotopy category in terms of the original category. This allows you to make constructions analogous to those used to study the homotopy theory of topological spaces. A model category has a class of maps called weak equivalences plus two other classes of maps, called cofibrations and fibrations. Quillen's axioms ensure that the homotopy category exists and that the cofibrations and fibrations have extension and lifting properties similar to those of cofibration and fibration maps of topological spaces. During the past several decades the language of model categories has become standard in many areas of algebraic topology, and it is increasingly being used in other fields where homotopy theoretic ideas are becoming important, including modern algebraic $K$-theory and algebraic geometry. All these subjects and more are discussed in the book, beginning with the basic definitions and giving complete arguments in order to make the motivations and proofs accessible to the novice. The book is intended for graduate students and research mathematicians working in homotopy theory and related areas.

Stable Stems

Download Stable Stems PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470437880
Total Pages : 174 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Stable Stems by : Daniel C. Isaksen

Download or read book Stable Stems written by Daniel C. Isaksen and published by American Mathematical Soc.. This book was released on 2020-02-13 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author presents a detailed analysis of 2-complete stable homotopy groups, both in the classical context and in the motivic context over C. He uses the motivic May spectral sequence to compute the cohomology of the motivic Steenrod algebra over C through the 70-stem. He then uses the motivic Adams spectral sequence to obtain motivic stable homotopy groups through the 59-stem. He also describes the complete calculation to the 65-stem, but defers the proofs in this range to forthcoming publications. In addition to finding all Adams differentials, the author also resolves all hidden extensions by 2, η, and ν through the 59-stem, except for a few carefully enumerated exceptions that remain unknown. The analogous classical stable homotopy groups are easy consequences. The author also computes the motivic stable homotopy groups of the cofiber of the motivic element τ. This computation is essential for resolving hidden extensions in the Adams spectral sequence. He shows that the homotopy groups of the cofiber of τ are the same as the E2-page of the classical Adams-Novikov spectral sequence. This allows him to compute the classical Adams-Novikov spectral sequence, including differentials and hidden extensions, in a larger range than was previously known.

Motivic Homotopy Theory

Download Motivic Homotopy Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540458972
Total Pages : 228 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Motivic Homotopy Theory by : Bjorn Ian Dundas

Download or read book Motivic Homotopy Theory written by Bjorn Ian Dundas and published by Springer Science & Business Media. This book was released on 2007-07-11 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.