Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Power Properties Of Linearity Tests For Time Series
Download Power Properties Of Linearity Tests For Time Series full books in PDF, epub, and Kindle. Read online Power Properties Of Linearity Tests For Time Series ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Linear Models and Time-Series Analysis by : Marc S. Paolella
Download or read book Linear Models and Time-Series Analysis written by Marc S. Paolella and published by John Wiley & Sons. This book was released on 2018-12-17 with total page 896 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and timely edition on an emerging new trend in time series Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH sets a strong foundation, in terms of distribution theory, for the linear model (regression and ANOVA), univariate time series analysis (ARMAX and GARCH), and some multivariate models associated primarily with modeling financial asset returns (copula-based structures and the discrete mixed normal and Laplace). It builds on the author's previous book, Fundamental Statistical Inference: A Computational Approach, which introduced the major concepts of statistical inference. Attention is explicitly paid to application and numeric computation, with examples of Matlab code throughout. The code offers a framework for discussion and illustration of numerics, and shows the mapping from theory to computation. The topic of time series analysis is on firm footing, with numerous textbooks and research journals dedicated to it. With respect to the subject/technology, many chapters in Linear Models and Time-Series Analysis cover firmly entrenched topics (regression and ARMA). Several others are dedicated to very modern methods, as used in empirical finance, asset pricing, risk management, and portfolio optimization, in order to address the severe change in performance of many pension funds, and changes in how fund managers work. Covers traditional time series analysis with new guidelines Provides access to cutting edge topics that are at the forefront of financial econometrics and industry Includes latest developments and topics such as financial returns data, notably also in a multivariate context Written by a leading expert in time series analysis Extensively classroom tested Includes a tutorial on SAS Supplemented with a companion website containing numerous Matlab programs Solutions to most exercises are provided in the book Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH is suitable for advanced masters students in statistics and quantitative finance, as well as doctoral students in economics and finance. It is also useful for quantitative financial practitioners in large financial institutions and smaller finance outlets.
Book Synopsis Applied Economic Forecasting Using Time Series Methods by : Eric Ghysels
Download or read book Applied Economic Forecasting Using Time Series Methods written by Eric Ghysels and published by Oxford University Press. This book was released on 2018 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: Economic forecasting is a key ingredient of decision making in the public and private sectors. This book provides the necessary tools to solve real-world forecasting problems using time-series methods. It targets undergraduate and graduate students as well as researchers in public and private institutions interested in applied economic forecasting.
Book Synopsis Recent Advances in Estimating Nonlinear Models by : Jun Ma
Download or read book Recent Advances in Estimating Nonlinear Models written by Jun Ma and published by Springer Science & Business Media. This book was released on 2013-09-24 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear models have been used extensively in the areas of economics and finance. Recent literature on the topic has shown that a large number of series exhibit nonlinear dynamics as opposed to the alternative--linear dynamics. Incorporating these concepts involves deriving and estimating nonlinear time series models, and these have typically taken the form of Threshold Autoregression (TAR) models, Exponential Smooth Transition (ESTAR) models, and Markov Switching (MS) models, among several others. This edited volume provides a timely overview of nonlinear estimation techniques, offering new methods and insights into nonlinear time series analysis. It features cutting-edge research from leading academics in economics, finance, and business management, and will focus on such topics as Zero-Information-Limit-Conditions, using Markov Switching Models to analyze economics series, and how best to distinguish between competing nonlinear models. Principles and techniques in this book will appeal to econometricians, finance professors teaching quantitative finance, researchers, and graduate students interested in learning how to apply advances in nonlinear time series modeling to solve complex problems in economics and finance.
Book Synopsis Essentials of Time Series for Financial Applications by : Massimo Guidolin
Download or read book Essentials of Time Series for Financial Applications written by Massimo Guidolin and published by Academic Press. This book was released on 2018-05-29 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essentials of Time Series for Financial Applications serves as an agile reference for upper level students and practitioners who desire a formal, easy-to-follow introduction to the most important time series methods applied in financial applications (pricing, asset management, quant strategies, and risk management). Real-life data and examples developed with EViews illustrate the links between the formal apparatus and the applications. The examples either directly exploit the tools that EViews makes available or use programs that by employing EViews implement specific topics or techniques. The book balances a formal framework with as few proofs as possible against many examples that support its central ideas. Boxes are used throughout to remind readers of technical aspects and definitions and to present examples in a compact fashion, with full details (workout files) available in an on-line appendix. The more advanced chapters provide discussion sections that refer to more advanced textbooks or detailed proofs. - Provides practical, hands-on examples in time-series econometrics - Presents a more application-oriented, less technical book on financial econometrics - Offers rigorous coverage, including technical aspects and references for the proofs, despite being an introduction - Features examples worked out in EViews (9 or higher)
Book Synopsis Elements of Nonlinear Time Series Analysis and Forecasting by : Jan G. De Gooijer
Download or read book Elements of Nonlinear Time Series Analysis and Forecasting written by Jan G. De Gooijer and published by Springer. This book was released on 2017-03-30 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.
Book Synopsis Econometric Modelling with Time Series by : Vance Martin
Download or read book Econometric Modelling with Time Series written by Vance Martin and published by Cambridge University Press. This book was released on 2013 with total page 925 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.
Book Synopsis Recent Developments in Nonlinear Cointegration with Applications to Macroeconomics and Finance by : Gilles Dufrénot
Download or read book Recent Developments in Nonlinear Cointegration with Applications to Macroeconomics and Finance written by Gilles Dufrénot and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introductory exposition of different topics that emerged in the literature as unifying themes between two fields of econometrics of time series, namely nonlinearity and nonstationarity. Papers on these topics have exploded over the last two decades, but they are rarely ex amined together. There is, undoubtedly, a variety of arguments that justify such a separation. But there are also good reasons that motivate their combination. People who are reluctant to a combined analysis might argue that nonlinearity and nonstationarity enhance non-trivial problems, so their combination does not stimulate interest in regard to plausibly increased difficulties. This argument can, however, be balanced by other ones of an economic nature. A predominant idea, today, is that a nonstationary series exhibits persistent deviations from its long-run components (either deterministic or stochastic trends). These persistent deviations are modelized in various ways: unit root models, fractionally integrated processes, models with shifts in the time trend, etc. However, there are many other behaviors inherent to nonstationary processes, that are not reflected in linear models. For instance, economic variables with mixture distributions, or processes that are state-dependent, undergo episodes of changing dynamics. In models with multiple long-run equi libria, the moving from an equilibrium to another sometimes implies hys teresis. Also, it is known that certain shocks can change the economic fundamentals, thereby reducing the possibility that an initial position is re-established after a shock (irreversibility).
Book Synopsis Dimension Estimation and Models by : Howell Tong
Download or read book Dimension Estimation and Models written by Howell Tong and published by World Scientific. This book was released on 1993 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the first in the new series Nonlinear Time Series and Chaos. The general aim of the series is to provide a bridge between the two communities by inviting prominent researchers in their respective fields to give a systematic account of their chosen topics, starting at the beginning and ending with the latest state. It is hoped that researchers in both communities will find the topics relevant and thought provoking. In this volume, the first chapter, written by Professor Colleen Cutler, is a comprehensive account of the theory and estimation of fractal dimension, a topic of central importance in dynamical systems, which has recently attracted the attention of the statisticians. As it is natural to study a stochastic dynamical system within the framework of Markov chains, it is therefore relevant to study their limiting behaviour. The second chapter, written by Professor Kung-Sik Chan, reviews some limit theorems of Markov chains and illustrates their relevance to chaos. The next three chapters are concerned with specific models. Briefly, Chapter Three by Professor Peter Lewis and Dr Bonnie Ray and Chapter Four by Professor Peter Brockwell generalise the class of self-exciting threshold autoregressive models in different directions. In Chapter Three, the new and powerful methodology of multivariate adaptive regression splines (MARS) is adapted to time series data. Its versatility is illustrated by reference to the very interesting and complex sea surface temperature data. Chapter Four exploits the greater tractability of continuous-time Markov approach to discrete-time data. The approach is particularly relevant to irregularly sampled data. The concluding chapter, by Professor Pham Dinh Tuan, is likely to be the most definitive account of bilinear models in discrete time to date.
Book Synopsis Hydrologic Time Series Analysis by : Deepesh Machiwal
Download or read book Hydrologic Time Series Analysis written by Deepesh Machiwal and published by Springer Science & Business Media. This book was released on 2012-03-05 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a dearth of relevant books dealing with both theory and application of time series analysis techniques, particularly in the field of water resources engineering. Therefore, many hydrologists and hydrogeologists face difficulties in adopting time series analysis as one of the tools for their research. This book fills this gap by providing a proper blend of theoretical and practical aspects of time sereies analysis. It deals with a comprehensive overview of time series characteristics in hydrology/water resources engineering, various tools and techniques for analyzing time series data, theoretical details of 31 available statistical tests along with detailed procedures for applying them to real-world time series data, theory and methodology of stochastic modelling, and current status of time series analysis in hydrological sciences. In adition, it demonstrates the application of most time series tests through a case study as well as presents a comparative performance evaluation of various time series tests, together with four invited case studies from India and abroad. This book will not only serve as a textbook for the students and teachers in water resources engineering but will also serve as the most comprehensive reference to educate researchers/scientists about the theory and practice of time series analysis in hydrological sciences. This book will be very useful to the students, researchers, teachers and professionals involved in water resources, hydrology, ecology, climate change, earth science, and environmental studies.
Download or read book NBS Special Publication written by and published by . This book was released on 1970 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis An Author and Permuted Title Index to Selected Statistical Journals by : Brian L. Joiner
Download or read book An Author and Permuted Title Index to Selected Statistical Journals written by Brian L. Joiner and published by . This book was released on 1970 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: All articles, notes, queries, corrigenda, and obituaries appearing in the following journals during the indicated years are indexed: Annals of mathematical statistics, 1961-1969; Biometrics, 1965-1969#3; Biometrics, 1951-1969; Journal of the American Statistical Association, 1956-1969; Journal of the Royal Statistical Society, Series B, 1954-1969,#2; South African statistical journal, 1967-1969,#2; Technometrics, 1959-1969.--p.iv.
Book Synopsis Macroeconometrics and Time Series Analysis by : Steven Durlauf
Download or read book Macroeconometrics and Time Series Analysis written by Steven Durlauf and published by Springer. This book was released on 2016-04-30 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Specially selected from The New Palgrave Dictionary of Economics 2nd edition, each article within this compendium covers the fundamental themes within the discipline and is written by a leading practitioner in the field. A handy reference tool.
Book Synopsis Specification Analysis in the Linear Model by : Maxwell L. King
Download or read book Specification Analysis in the Linear Model written by Maxwell L. King and published by Routledge. This book was released on 2018-03-05 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 1987. This collection of original papers deals with various issues of specification in the context of the linear statistical model. The volume honours the early econometric work of Donald Cochrane, late Dean of Economics and Politics at Monash University in Australia. The chapters focus on problems associated with autocorrelation of the error term in the linear regression model and include appraisals of early work on this topic by Cochrane and Orcutt. The book includes an extensive survey of autocorrelation tests; some exact finite-sample tests; and some issues in preliminary test estimation. A wide range of other specification issues is discussed, including the implications of random regressors for Bayesian prediction; modelling with joint conditional probability functions; and results from duality theory. There is a major survey chapter dealing with specification tests for non-nested models, and some of the applications discussed by the contributors deal with the British National Accounts and with Australian financial and housing markets.
Book Synopsis Time Series Analysis by : Katsuto Tanaka
Download or read book Time Series Analysis written by Katsuto Tanaka and published by John Wiley & Sons. This book was released on 2017-03-27 with total page 1139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reflects the developments and new directions in the field since the publication of the first successful edition and contains a complete set of problems and solutions This revised and expanded edition reflects the developments and new directions in the field since the publication of the first edition. In particular, sections on nonstationary panel data analysis and a discussion on the distinction between deterministic and stochastic trends have been added. Three new chapters on long-memory discrete-time and continuous-time processes have also been created, whereas some chapters have been merged and some sections deleted. The first eleven chapters of the first edition have been compressed into ten chapters, with a chapter on nonstationary panel added and located under Part I: Analysis of Non-fractional Time Series. Chapters 12 to 14 have been newly written under Part II: Analysis of Fractional Time Series. Chapter 12 discusses the basic theory of long-memory processes by introducing ARFIMA models and the fractional Brownian motion (fBm). Chapter 13 is concerned with the computation of distributions of quadratic functionals of the fBm and its ratio. Next, Chapter 14 introduces the fractional Ornstein–Uhlenbeck process, on which the statistical inference is discussed. Finally, Chapter 15 gives a complete set of solutions to problems posed at the end of most sections. This new edition features: • Sections to discuss nonstationary panel data analysis, the problem of differentiating between deterministic and stochastic trends, and nonstationary processes of local deviations from a unit root • Consideration of the maximum likelihood estimator of the drift parameter, as well as asymptotics as the sampling span increases • Discussions on not only nonstationary but also noninvertible time series from a theoretical viewpoint • New topics such as the computation of limiting local powers of panel unit root tests, the derivation of the fractional unit root distribution, and unit root tests under the fBm error Time Series Analysis: Nonstationary and Noninvertible Distribution Theory, Second Edition, is a reference for graduate students in econometrics or time series analysis. Katsuto Tanaka, PhD, is a professor in the Faculty of Economics at Gakushuin University and was previously a professor at Hitotsubashi University. He is a recipient of the Tjalling C. Koopmans Econometric Theory Prize (1996), the Japan Statistical Society Prize (1998), and the Econometric Theory Award (1999). Aside from the first edition of Time Series Analysis (Wiley, 1996), Dr. Tanaka had published five econometrics and statistics books in Japanese.
Book Synopsis Asymptotics, Nonparametrics, and Time Series by : Subir Ghosh
Download or read book Asymptotics, Nonparametrics, and Time Series written by Subir Ghosh and published by CRC Press. This book was released on 1999-02-18 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Contains over 2500 equations and exhaustively covers not only nonparametrics but also parametric, semiparametric, frequentist, Bayesian, bootstrap, adaptive, univariate, and multivariate statistical methods, as well as practical uses of Markov chain models."
Book Synopsis An Introduction to Time Series Analysis and Forecasting by : Robert Alan Yaffee
Download or read book An Introduction to Time Series Analysis and Forecasting written by Robert Alan Yaffee and published by Elsevier. This book was released on 2000-05-12 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a clear explanation of the fundamental theory of time series analysis and forecasting, this book couples theory with applications of two popular statistical packages--SAS and SPSS. The text examines moving average, exponential smoothing, Census X-11 deseasonalization, ARIMA, intervention, transfer function, and autoregressive error models and has brief discussions of ARCH and GARCH models. The book features treatments of forecast improvement with regression and autoregression combination models and model and forecast evaluation, along with a sample size analysis for common time series models to attain adequate statistical power. The careful linkage of the theoretical constructs with the practical considerations involved in utilizing the statistical packages makes it easy for the user to properly apply these techniques. - Describes principal approaches to time series analysis and forecasting - Presents examples from public opinion research, policy analysis, political science, economics, and sociology - Math level pitched to general social science usage - Glossary makes the material accessible for readers at all levels
Book Synopsis Nonlinear Time Series Analysis of Economic and Financial Data by : Philip Rothman
Download or read book Nonlinear Time Series Analysis of Economic and Financial Data written by Philip Rothman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.