Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Polynomial Mappings
Download Polynomial Mappings full books in PDF, epub, and Kindle. Read online Polynomial Mappings ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Polynomial Mappings by : Wladyslaw Narkiewicz
Download or read book Polynomial Mappings written by Wladyslaw Narkiewicz and published by Springer. This book was released on 2006-11-14 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals with certain algebraic and arithmetical questions concerning polynomial mappings in one or several variables. Algebraic properties of the ring Int(R) of polynomials mapping a given ring R into itself are presented in the first part, starting with classical results of Polya, Ostrowski and Skolem. The second part deals with fully invariant sets of polynomial mappings F in one or several variables, i.e. sets X satisfying F(X)=X . This includes in particular a study of cyclic points of such mappings in the case of rings of algebrai integers. The text contains several exercises and a list of open problems.
Book Synopsis Cycles of Polynomial Mappings by : Michael Ernest Zieve
Download or read book Cycles of Polynomial Mappings written by Michael Ernest Zieve and published by . This book was released on 1996 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Lie Algebras written by Nathan Jacobson and published by Courier Corporation. This book was released on 2013-09-16 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: DIVDefinitive treatment of important subject in modern mathematics. Covers split semi-simple Lie algebras, universal enveloping algebras, classification of irreducible modules, automorphisms, simple Lie algebras over an arbitrary field, etc. Index. /div
Book Synopsis Finite Fields: Theory and Computation by : Igor Shparlinski
Download or read book Finite Fields: Theory and Computation written by Igor Shparlinski and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is mainly devoted to some computational and algorithmic problems in finite fields such as, for example, polynomial factorization, finding irreducible and primitive polynomials, the distribution of these primitive polynomials and of primitive points on elliptic curves, constructing bases of various types and new applications of finite fields to other areas of mathematics. For completeness we in clude two special chapters on some recent advances and applications of the theory of congruences (optimal coefficients, congruential pseudo-random number gener ators, modular arithmetic, etc.) and computational number theory (primality testing, factoring integers, computation in algebraic number theory, etc.). The problems considered here have many applications in Computer Science, Cod ing Theory, Cryptography, Numerical Methods, and so on. There are a few books devoted to more general questions, but the results contained in this book have not till now been collected under one cover. In the present work the author has attempted to point out new links among different areas of the theory of finite fields. It contains many very important results which previously could be found only in widely scattered and hardly available conference proceedings and journals. In particular, we extensively review results which originally appeared only in Russian, and are not well known to mathematicians outside the former USSR.
Book Synopsis What Is Integrability? by : Vladimir E. Zakharov
Download or read book What Is Integrability? written by Vladimir E. Zakharov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of devoting a complete book to this topic was born at one of the Workshops on Nonlinear and Turbulent Processes in Physics taking place reg ularly in Kiev. With the exception of E. D. Siggia and N. Ercolani, all authors of this volume were participants at the third of these workshops. All of them were acquainted with each other and with each other's work. Yet it seemed to be somewhat of a discovery that all of them were and are trying to understand the same problem - the problem of integrability of dynamical systems, primarily Hamiltonian ones with an infinite number of degrees of freedom. No doubt that they (or to be more exact, we) were led to this by the logical process of scientific evolution which often leads to independent, almost simultaneous discoveries. Integrable, or, more accurately, exactly solvable equations are essential to theoretical and mathematical physics. One could say that they constitute the "mathematical nucleus" of theoretical physics whose goal is to describe real clas sical or quantum systems. For example, the kinetic gas theory may be considered to be a theory of a system which is trivially integrable: the system of classical noninteracting particles. One of the main tasks of quantum electrodynamics is the development of a theory of an integrable perturbed quantum system, namely, noninteracting electromagnetic and electron-positron fields.
Book Synopsis Collected Papers of John Milnor by : Araceli Bonifant
Download or read book Collected Papers of John Milnor written by Araceli Bonifant and published by American Mathematical Soc.. This book was released on 2014-11-05 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the seventh in the series "Collected Papers of John Milnor." Together with the preceding Volume VI, it contains all of Milnor's papers in dynamics, through the year 2012. Most of the papers are in holomorphic dynamics; however, there are two in real dynamics and one on cellular automata. Two of the papers are published here for the first time. The papers in this volume provide important and fundamental material in real and complex dynamical systems. Many have become classics, and have inspired further research in the field. Some of the questions addressed here continue to be important in current research. In some cases, there have been minor corrections or clarifications, as well as references to more recent work which answers questions raised by the author. The volume also includes an index to facilitate searching the book for specific topics.
Book Synopsis Conformal Dynamics and Hyperbolic Geometry by : Francis Bonahon
Download or read book Conformal Dynamics and Hyperbolic Geometry written by Francis Bonahon and published by American Mathematical Soc.. This book was released on 2012 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Conference on Conformal Dynamics and Hyperbolic Geometry, held October 21-23, 2010, in honor of Linda Keen's 70th birthday. This volume provides a valuable introduction to problems in conformal and hyperbolic geometry and one dimensional, conformal dynamics. It includes a classic expository article by John Milnor on the structure of hyperbolic components of the parameter space for dynamical systems arising from the iteration of polynomial maps in the complex plane. In addition there are foundational results concerning Teichmuller theory, the geometry of Fuchsian and Kleinian groups, domain convergence properties for the Poincare metric, elaboration of the theory of the universal solenoid, the geometry of dynamical systems acting on a circle, and realization of Thompson's group as a mapping class group for a uniformly asymptotically affine circle endomorphism. The portion of the volume dealing with complex dynamics will appeal to a diverse group of mathematicians. Recently many researchers working in a wide range of topics, including topology, algebraic geometry, complex analysis, and dynamical systems, have become involved in aspects of this field.
Book Synopsis Several Complex Variables and the Geometry of Real Hypersurfaces by : John P. D'Angelo
Download or read book Several Complex Variables and the Geometry of Real Hypersurfaces written by John P. D'Angelo and published by Routledge. This book was released on 2019-07-16 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several Complex Variables and the Geometry of Real Hypersurfaces covers a wide range of information from basic facts about holomorphic functions of several complex variables through deep results such as subelliptic estimates for the ?-Neumann problem on pseudoconvex domains with a real analytic boundary. The book focuses on describing the geometry of a real hypersurface in a complex vector space by understanding its relationship with ambient complex analytic varieties. You will learn how to decide whether a real hypersurface contains complex varieties, how closely such varieties can contact the hypersurface, and why it's important. The book concludes with two sets of problems: routine problems and difficult problems (many of which are unsolved). Principal prerequisites for using this book include a thorough understanding of advanced calculus and standard knowledge of complex analysis in one variable. Several Complex Variables and the Geometry of Real Hypersurfaces will be a useful text for advanced graduate students and professionals working in complex analysis.
Book Synopsis Encyclopaedia of Mathematics by : Michiel Hazewinkel
Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second supplementary volume to Kluwer's highly acclaimed eleven-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing eleven volumes, and together these twelve volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.
Book Synopsis Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis by : Eric Grinberg
Download or read book Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis written by Eric Grinberg and published by American Mathematical Soc.. This book was released on 2000 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the proceedings from the conference honoring the work of Leon Ehrenpreis. Professor Ehrenpreis worked in many different areas of mathematics and found connections among all of them. For example, one can find his analytic ideas in the context of number theory, geometric thinking within analysis, transcendental number theory applied to partial differential equations, and more. The conference brought together the communities of mathematicians working in the areas of interest to Professor Ehrenpreis and allowed them to share the research inspired by his work. The collection of articles here presents current research on PDEs, several complex variables, analytic number theory, integral geometry, and tomography. The work of Professor Ehrenpreis has contributed to basic definitions in these areas and has motivated a wealth of research results. This volume offers a survey of the fundamental principles that unified the conference and influenced the mathematics of Leon Ehrenpreis.
Book Synopsis Complex Dynamics by : Dierk Schleicher
Download or read book Complex Dynamics written by Dierk Schleicher and published by CRC Press. This book was released on 2009-11-03 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex Dynamics: Families and Friends features contributions by many of the leading mathematicians in the field, such as Mikhail Lyubich, John Milnor, Mitsuhiro Shishikura, and William Thurston. Some of the chapters, including an introduction by Thurston to the general subject of complex dynamics, are classic manuscripts that were never published
Book Synopsis Complex Polynomials by : T. Sheil-Small
Download or read book Complex Polynomials written by T. Sheil-Small and published by Cambridge University Press. This book was released on 2002-11-07 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the geometric theory of polynomials and rational functions in the plane. Any theory in the plane should make full use of the complex numbers and thus the early chapters build the foundations of complex variable theory, melding together ideas from algebra, topology and analysis.
Download or read book Lie Algebras written by Zhe-Xian Wan and published by Elsevier. This book was released on 2014-07-10 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie Algebras is based on lectures given by the author at the Institute of Mathematics, Academia Sinica. This book discusses the fundamentals of the Lie algebras theory formulated by S. Lie. The author explains that Lie algebras are algebraic structures employed when one studies Lie groups. The book also explains Engel's theorem, nilpotent linear Lie algebras, as well as the existence of Cartan subalgebras and their conjugacy. The text also addresses the Cartan decompositions and root systems of semi-simple Lie algebras and the dependence of structure of semi-simple Lie algebras on root systems. The text explains in details the fundamental systems of roots of semi simple Lie algebras and Weyl groups including the properties of the latter. The book addresses the group of automorphisms and the derivation algebra of a Lie algebra and Schur's lemma. The book then shows the characters of irreducible representations of semi simple Lie algebras. This book can be useful for students in advance algebra or who have a background in linear algebra.
Book Synopsis Ideals, Varieties, and Algorithms by : David Cox
Download or read book Ideals, Varieties, and Algorithms written by David Cox and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. The book bases its discussion of algorithms on a generalisation of the division algorithm for polynomials in one variable that was only discovered in the 1960's. Although the algorithmic roots of algebraic geometry are old, the computational aspects were neglected earlier in this century. This has changed in recent years, and new algorithms, coupled with the power of fast computers, have let to some interesting applications, for example in robotics and in geometric theorem proving. In preparing this new edition, the authors present an improved proof of the Buchberger Criterion as well as a proof of Bezout's Theorem.
Download or read book Algebra II written by N. Bourbaki and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a softcover reprint of chapters four through seven of the 1990 English translation of the revised and expanded version of Bourbaki’s Algebre. Much material was added or revised for this edition, which thoroughly establishes the theories of commutative fields and modules over a principal ideal domain.
Author :Pierre Antoine Grillet Publisher :Springer Science & Business Media ISBN 13 :0387715681 Total Pages :684 pages Book Rating :4.3/5 (877 download)
Book Synopsis Abstract Algebra by : Pierre Antoine Grillet
Download or read book Abstract Algebra written by Pierre Antoine Grillet and published by Springer Science & Business Media. This book was released on 2007-07-21 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: A completely reworked new edition of this superb textbook. This key work is geared to the needs of the graduate student. It covers, with proofs, the usual major branches of groups, rings, fields, and modules. Its inclusive approach means that all of the necessary areas are explored, while the level of detail is ideal for the intended readership. The text tries to promote the conceptual understanding of algebra as a whole, doing so with a masterful grasp of methodology. Despite the abstract subject matter, the author includes a careful selection of important examples, together with a detailed elaboration of the more sophisticated, abstract theories.