Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Polymer Electrolyte Fuel Cell Durability
Download Polymer Electrolyte Fuel Cell Durability full books in PDF, epub, and Kindle. Read online Polymer Electrolyte Fuel Cell Durability ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Polymer Electrolyte Fuel Cell Degradation by : Matthew M. Mench
Download or read book Polymer Electrolyte Fuel Cell Degradation written by Matthew M. Mench and published by Academic Press. This book was released on 2012 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: For full market implementation of PEM fuel cells to become a reality, two main limiting technical issues must be overcome- cost and durability. This cutting-edge volume directly addresses the state-of-the-art advances in durability within every fuel cell stack component. [...] chapters on durability in the individual fuel cell components -- membranes, electrodes, diffusion media, and bipolar plates -- highlight specific degradation modes and mitigation strategies. The book also includes chapters which synthesize the component-related failure modes to examine experimental diagnostics, computational modeling, and laboratory protocol"--Back cover.
Book Synopsis High Temperature Polymer Electrolyte Membrane Fuel Cells by : Qingfeng Li
Download or read book High Temperature Polymer Electrolyte Membrane Fuel Cells written by Qingfeng Li and published by Springer. This book was released on 2015-10-15 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications.
Book Synopsis Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology by : Christoph Hartnig
Download or read book Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology written by Christoph Hartnig and published by Elsevier. This book was released on 2012-02-20 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads.Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology, Volume 2 details in situ characterization, including experimental and innovative techniques, used to understand fuel cell operational issues and materials performance. Part I reviews enhanced techniques for characterization of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry. Part II reviews characterization techniques for water and fuel management, including neutron radiography and tomography, magnetic resonance imaging and Raman spectroscopy. Finally, Part III focuses on locally resolved characterization methods, from transient techniques and electrochemical microscopy, to laser-optical methods and synchrotron radiography.With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology will be an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Polymer electrolyte membrane and direct methanol fuel cell technology is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. - Details in situ characterisation of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), including the experimental and innovative techniques used to understand fuel cell operational issues and materials performance - Examines enhanced techniques for characterisation of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry - Reviews characterisation techniques for water and fuel management, including neutron radiography and tomography, and comprehensively covers locally resolved characterisation methods, from transient techniques to laser-optical methods
Book Synopsis Polymer Electrolyte Fuel Cells by : Alejandro A. Franco
Download or read book Polymer Electrolyte Fuel Cells written by Alejandro A. Franco and published by CRC Press. This book was released on 2013-07-09 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the recent research progress on the fundamental understanding of the materials degradation phenomena in PEFC, for automotive applications. On a multidisciplinary basis, through contributions of internationally recognized researchers in the field, this book provides a complete critical review on crucial scientific topics related to PEFC materials degradation, and ensures a strong balance between experimental and theoretical analysis and preparation techniques with several practical applications for both the research and the industrial communities.
Book Synopsis Polymer Electrolyte Fuel Cell Durability by : Felix N. Büchi
Download or read book Polymer Electrolyte Fuel Cell Durability written by Felix N. Büchi and published by Springer Science & Business Media. This book was released on 2009-02-08 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a significant number of R&D projects, performed mostly after 2000, devoted to the understanding and prevention of performance degradation processes in polymer electrolyte fuel cells (PEFCs). The extent and severity of performance degradation processes in PEFCs were recognized rather gradually. Indeed, the recognition overlapped with a significant number of industrial dem- strations of fuel cell powered vehicles, which would suggest a degree of technology maturity beyond the resaolution of fundamental failure mechanisms. An intriguing question, therefore, is why has there been this apparent delay in addressing fun- mental performance stability requirements. The apparent answer is that testing of the power system under fully realistic operation conditions was one prerequisite for revealing the nature and extent of some key modes of PEFC stack failure. Such modes of failure were not exposed to a similar degree, or not at all, in earlier tests of PEFC stacks which were not performed under fully relevant conditions, parti- larly such tests which did not include multiple on–off and/or high power–low power cycles typical for transportation and mobile power applications of PEFCs. Long-term testing of PEFCs reported in the early 1990s by both Los Alamos National Laboratory and Ballard Power was performed under conditions of c- stant cell voltage, typically near the maximum power point of the PEFC.
Book Synopsis Polymer Electrolyte Fuel Cells by : Michael Eikerling
Download or read book Polymer Electrolyte Fuel Cells written by Michael Eikerling and published by CRC Press. This book was released on 2014-09-23 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the op
Book Synopsis Fuel Cell Engines by : Matthew M. Mench
Download or read book Fuel Cell Engines written by Matthew M. Mench and published by John Wiley & Sons. This book was released on 2008-03-07 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel Cell Engines is an introduction to the fundamental principles of electrochemistry, thermodynamics, kinetics, material science and transport applied specifically to fuel cells. It covers scientific fundamentals and provides a basic understanding that enables proper technical decision-making.
Book Synopsis Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology by : C Hartnig
Download or read book Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology written by C Hartnig and published by Woodhead Publishing. This book was released on 2012-04-02 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume set reviews the fundamentals, performance, and in situ characterization of PEMFCs and DMFCs. Volume 1 covers the fundamental science and engineering of these low temperature fuel cells, focusing on understanding and improving performance and operation. Part one reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches. Part two details performance issues relevant to fuel cell operation and durability, such as catalyst ageing, materials degradation and durability testing, and goes on to review advanced transport simulation approaches, degradation modelling and experimental monitoring techniques. Volume 2 details in situ characterization, including experimental and innovative techniques, used to understand fuel cell operational issues and materials performance. Part I reviews enhanced techniques for characterization of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry. Part II reviews characterization techniques for water and fuel management, including neutron radiography and tomography, magnetic resonance imaging and Raman spectroscopy. Finally, Part III focuses on locally resolved characterization methods, from transient techniques and electrochemical microscopy, to laser-optical methods and synchrotron radiography. Covers the fundamental science and engineering of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), focusing on understanding and improving performance and operation Reviews systems fundamentals, ranging from fuels and fuel processing, to the development of membrane and catalyst materials and technology, and gas diffusion media and flowfields, as well as life cycle aspects and modelling approaches Details in situ characterisation of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), including the experimental and innovative techniques used to understand fuel cell operational issues and materials performance
Book Synopsis PEM Fuel Cell Electrocatalysts and Catalyst Layers by : Jiujun Zhang
Download or read book PEM Fuel Cell Electrocatalysts and Catalyst Layers written by Jiujun Zhang and published by Springer Science & Business Media. This book was released on 2008-08-26 with total page 1147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proton exchange membrane (PEM) fuel cells are promising clean energy converting devices with high efficiency and low to zero emissions. Such power sources can be used in transportation, stationary, portable and micro power applications. The key components of these fuel cells are catalysts and catalyst layers. “PEM Fuel Cell Electrocatalysts and Catalyst Layers” provides a comprehensive, in-depth survey of the field, presented by internationally renowned fuel cell scientists. The opening chapters introduce the fundamentals of electrochemical theory and fuel cell catalysis. Later chapters investigate the synthesis, characterization, and activity validation of PEM fuel cell catalysts. Further chapters describe in detail the integration of the electrocatalyst/catalyst layers into the fuel cell, and their performance validation. Researchers and engineers in the fuel cell industry will find this book a valuable resource, as will students of electrochemical engineering and catalyst synthesis.
Book Synopsis Polymer Membranes for Fuel Cells by : Javaid Zaidi
Download or read book Polymer Membranes for Fuel Cells written by Javaid Zaidi and published by Springer Science & Business Media. This book was released on 2010-07-15 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the late-1960’s, perfluorosulfonic acid (PFSAs) ionomers have dominated the PEM fuel cell industry as the membrane material of choice. The “gold standard’ amongst the many variations that exist today has been, and to a great extent still is, DuPont’s Nafion® family of materials. However, there is significant concern in the industry that these materials will not meet the cost, performance, and durability requirementsnecessary to drive commercialization in key market segments – es- cially automotive. Indeed, Honda has already put fuel cell vehicles in the hands of real end users that have home-grown fuel cell stack technology incorporating hydrocarbon-based ionomers. “Polymer Membranes in Fuel Cells” takes an in-depth look at the new chem- tries and membrane technologies that have been developed over the years to address the concerns associated with the materials currently in use. Unlike the PFSAs, which were originally developed for the chlor-alkali industry, the more recent hydrocarbon and composite materials have been developed to meet the specific requirements of PEM Fuel Cells. Having said this, most of the work has been based on derivatives of known polymers, such as poly(ether-ether ketones), to ensure that the critical requirement of low cost is met. More aggressive operational requi- ments have also spurred the development on new materials; for example, the need for operation at higher temperature under low relative humidity has spawned the creation of a plethora of new polymers with potential application in PEM Fuel Cells.
Book Synopsis Heterogeneous Catalysts by : Wey Yang Teoh
Download or read book Heterogeneous Catalysts written by Wey Yang Teoh and published by John Wiley & Sons. This book was released on 2021-02-23 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents state-of-the-art knowledge of heterogeneous catalysts including new applications in energy and environmental fields This book focuses on emerging techniques in heterogeneous catalysis, from new methodology for catalysts design and synthesis, surface studies and operando spectroscopies, ab initio techniques, to critical catalytic systems as relevant to energy and the environment. It provides the vision of addressing the foreseeable knowledge gap unfilled by classical knowledge in the field. Heterogeneous Catalysts: Advanced Design, Characterization and Applications begins with an overview on the evolution in catalysts synthesis and introduces readers to facets engineering on catalysts; electrochemical synthesis of nanostructured catalytic thin films; and bandgap engineering of semiconductor photocatalysts. Next, it examines how we are gaining a more precise understanding of catalytic events and materials under working conditions. It covers bridging pressure gap in surface catalytic studies; tomography in catalysts design; and resolving catalyst performance at nanoscale via fluorescence microscopy. Quantum approaches to predicting molecular reactions on catalytic surfaces follows that, along with chapters on Density Functional Theory in heterogeneous catalysis; first principles simulation of electrified interfaces in electrochemistry; and high-throughput computational design of novel catalytic materials. The book also discusses embracing the energy and environmental challenges of the 21st century through heterogeneous catalysis and much more. Presents recent developments in heterogeneous catalysis with emphasis on new fundamentals and emerging techniques Offers a comprehensive look at the important aspects of heterogeneous catalysis Provides an applications-oriented, bottoms-up approach to a high-interest subject that plays a vital role in industry and is widely applied in areas related to energy and environment Heterogeneous Catalysts: Advanced Design, Characterization and Applications is an important book for catalytic chemists, materials scientists, surface chemists, physical chemists, inorganic chemists, chemical engineers, and other professionals working in the chemical industry.
Book Synopsis Solid Oxide Fuel Cell Technology by : K Huang
Download or read book Solid Oxide Fuel Cell Technology written by K Huang and published by Elsevier. This book was released on 2009-07-30 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: High temperature solid oxide fuel cell (SOFC) technology is a promising power generation option that features high electrical efficiency and low emissions of environmentally polluting gases such as CO2, NOox and SOx. It is ideal for distributed stationary power generation applications where both high-efficiency electricity and high-quality heat are in strong demand. For the past few decades, SOFC technology has attracted intense worldwide R&D effort and, along with polymer electrolyte membrane fuel cell (PEMFC) technology, has undergone extensive commercialization development.This book presents a systematic and in-depth narrative of the technology from the perspective of fundamentals, providing comprehensive theoretical analysis and innovative characterization techniques for SOFC technology. The book initially deals with the basics and development of SOFC technology from cell materials to fundamental thermodynamics, electronic properties of solids and charged particle transport. This coverage is extended with a thorough analysis of such operational features as current flow and energy balance, and on to voltage losses and electrical efficiency. Furthermore, the book also covers the important issues of fuel cell stability and durability with chapters on performance characterization, fuel processing, and electrode poisoning. Finally, the book provides a comprehensive review for SOFC materials and fabrication techniques. A series of useful scientific appendices rounds off the book.Solid oxide fuel cell technology is a standard reference for all those researching this important field as well as those working in the power industry. - Provides a comprehensive review of solid oxide fuel cells from history and design to chemistry and materials development - Presents analysis of operational features including current flow, energy balance, voltage losses and electrical efficiency - Explores fuel cell stability and durability with specific chapters examining performance characterization, fuel processing and electrode poisoning
Book Synopsis Proton Exchange Membrane Fuel Cells by : David P. Wilkinson
Download or read book Proton Exchange Membrane Fuel Cells written by David P. Wilkinson and published by CRC Press. This book was released on 2009-11-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Detailed, Up-to-Date Treatment of Key Developments in PEMFC Materials The potential to revolutionize the way we power our world Because of its lower temperature and special polymer electrolyte membrane, the proton exchange membrane fuel cell (PEMFC) is well-suited for transportation, portable, and micro fuel cell applications. But the performance of these fuel cells critically depends on the materials used for the various cell components. Durability, water management, and reducing catalyst poisoning are important factors when selecting PEMFC materials. Written by international PEMFC scientists and engineers from top-level organizations, Proton Exchange Membrane Fuel Cells: Materials Properties and Performance provides a single resource of information for understanding how to select and develop materials for improved PEMFC performance. The book focuses on the major components of the fuel cell unit, along with design and modeling aspects. It covers catalysts and catalyst layers, before discussing the key components of membranes, diffusion layers, and bipolar plates. The book also explores materials modeling for the PEMFC. This volume assesses the current status of PEMFC fuel cell technology, research and development directions, and the scientific and engineering challenges facing the fuel cell community. It demonstrates how the production of a commercially viable PEMFC requires a compromise of materials with adequate properties, design interaction, and manufacturability.
Book Synopsis Fuel Cells and Hydrogen Production by : Timothy E. Lipman
Download or read book Fuel Cells and Hydrogen Production written by Timothy E. Lipman and published by Springer. This book was released on 2018-10-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expected end of the “oil age” will lead to increasing focus and reliance on alternative energy conversion devices, among which fuel cells have the potential to play an important role. Not only can phosphoric acid and solid oxide fuel cells already efficiently convert today’s fossil fuels, including methane, into electricity, but other types of fuel cells, such as polymer electrolyte membrane fuel cells, have the potential to become the cornerstones of a possible future hydrogen economy. This handbook offers concise yet comprehensive coverage of the current state of fuel cell research and identifies key areas for future investigation. Internationally renowned specialists provide authoritative introductions to a wide variety of fuel cell types and hydrogen production technologies, and discuss materials and components for these systems. Sustainability and marketing considerations are also covered, including comparisons of fuel cells with alternative technologies.
Book Synopsis PEM Fuel Cell Testing and Diagnosis by : Jiujun Zhang
Download or read book PEM Fuel Cell Testing and Diagnosis written by Jiujun Zhang and published by Newnes. This book was released on 2013-01-22 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: PEM Fuel Cell Testing and Diagnosis covers the recent advances in PEM (proton exchange membrane) fuel cell systems, focusing on instruments and techniques for testing and diagnosis, and the application of diagnostic techniques in practical tests and operation. This book is a unique source of electrochemical techniques for researchers, scientists and engineers working in the area of fuel cells. Proton exchange membrane fuel cells are currently considered the most promising clean energy-converting devices for stationary, transportation, and micro-power applications due to their high energy density, high efficiency, and environmental friendliness. To advance research and development of this emerging technology, testing and diagnosis are an essential combined step. This book aids those efforts, addressing effects of humidity, temperature and pressure on fuel cells, degradation and failure analysis, and design and assembly of MEAs, single cells and stacks. - Provides fundamental and theoretical principles for PEM fuel cell testing and diagnosis. - Comprehensive source for selecting techniques, experimental designs and data analysis - Analyzes PEM fuel cell degradation and failure mechanisms, and suggests failure mitigation strategies - Provides principles for selecting PEM fuel cell key materials to improve durability
Book Synopsis Proton Exchange Membrane Fuel Cells by : Alhussein Albarbar
Download or read book Proton Exchange Membrane Fuel Cells written by Alhussein Albarbar and published by Springer. This book was released on 2017-11-17 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the characteristics of Proton Exchange Membrane (PEM) Fuel Cells with a focus on deriving realistic finite element models. The book also explains in detail how to set up measuring systems, data analysis, and PEM Fuel Cells’ static and dynamic characteristics. Covered in detail are design and operation principles such as polarization phenomenon, thermodynamic analysis, and overall voltage; failure modes and mechanisms such as permanent faults, membrane degradation, and water management; and modelling and numerical simulation including semi-empirical, one-dimensional, two-dimensional, and three-dimensional models. It is appropriate for graduate students, researchers, and engineers who work with the design and reliability of hydrogen fuel cells, in particular proton exchange membrane fuel cells.
Book Synopsis Nanotechnology in Fuel Cells by : Huaihe Song
Download or read book Nanotechnology in Fuel Cells written by Huaihe Song and published by Elsevier. This book was released on 2022-02-23 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology in Fuel Cells focuses on the use of nanotechnology in macroscopic and nanosized fuel cells to enhance their performance and lifespan. The book covers the fundamental design concepts and promising applications of nanotechnology-enhanced fuel cells and their advantages over traditional fuel cells in portable devices, including longer shelf life and lower cost. In the case of proton-exchange membrane fuel cells (PEMFCs), nano-membranes could provide 100 times higher conductivity of hydrogen ions in low humidity conditions than traditional membranes. For hydrogen fuel cell, nanocatalysts (Pt hybrid nanoparticles) could provide 12 times higher catalytic activity. This is an important reference source for materials scientists and engineers who are looking to understand how nanotechnology is being used to create more efficient macro- and nanosized fuel cells. - Outlines how fuel cells can be nanoengineered to enhance their performance and lifespan - Covers a variety of fuel cell types, including proton-exchange membrane fuel cells and hydrogen-based fuel cells - Assesses the major challenges of nanoengineering fuel cells at an industrial scale