Plausible Neural Networks for Biological Modelling

Download Plausible Neural Networks for Biological Modelling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401006741
Total Pages : 264 pages
Book Rating : 4.4/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Plausible Neural Networks for Biological Modelling by : H.A. Mastebroek

Download or read book Plausible Neural Networks for Biological Modelling written by H.A. Mastebroek and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expression 'Neural Networks' refers traditionally to a class of mathematical algorithms that obtain their proper performance while they 'learn' from examples or from experience. As a consequence, they are suitable for performing straightforward and relatively simple tasks like classification, pattern recognition and prediction, as well as more sophisticated tasks like the processing of temporal sequences and the context dependent processing of complex problems. Also, a wide variety of control tasks can be executed by them, and the suggestion is relatively obvious that neural networks perform adequately in such cases because they are thought to mimic the biological nervous system which is also devoted to such tasks. As we shall see, this suggestion is false but does not do any harm as long as it is only the final performance of the algorithm which counts. Neural networks are also used in the modelling of the functioning of (sub systems in) the biological nervous system. It will be clear that in such cases it is certainly not irrelevant how similar their algorithm is to what is precisely going on in the nervous system. Standard artificial neural networks are constructed from 'units' (roughly similar to neurons) that transmit their 'activity' (similar to membrane potentials or to mean firing rates) to other units via 'weight factors' (similar to synaptic coupling efficacies).

Plausible Neural Networks for Biological Modelling

Download Plausible Neural Networks for Biological Modelling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780792371922
Total Pages : 276 pages
Book Rating : 4.3/5 (719 download)

DOWNLOAD NOW!


Book Synopsis Plausible Neural Networks for Biological Modelling by : H.A. Mastebroek

Download or read book Plausible Neural Networks for Biological Modelling written by H.A. Mastebroek and published by Springer Science & Business Media. This book was released on 2001-09-30 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has the unique intention of returning the mathematical tools of neural networks to the biological realm of the nervous system, where they originated a few decades ago. It aims to introduce, in a didactic manner, two relatively recent developments in neural network methodology, namely recurrence in the architecture and the use of spiking or integrate-and-fire neurons. In addition, the neuro-anatomical processes of synapse modification during development, training, and memory formation are discussed as realistic bases for weight-adjustment in neural networks. While neural networks have many applications outside biology, where it is irrelevant precisely which architecture and which algorithms are used, it is essential that there is a close relationship between the network's properties and whatever is the case in a neuro-biological phenomenon that is being modelled or simulated in terms of a neural network. A recurrent architecture, the use of spiking neurons and appropriate weight update rules contribute to the plausibility of a neural network in such a case. Therefore, in the first half of this book the foundations are laid for the application of neural networks as models for the various biological phenomena that are treated in the second half of this book. These include various neural network models of sensory and motor control tasks that implement one or several of the requirements for biological plausibility.

Fundamentals of Neural Network Modeling

Download Fundamentals of Neural Network Modeling PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262161756
Total Pages : 450 pages
Book Rating : 4.1/5 (617 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Neural Network Modeling by : Randolph W. Parks

Download or read book Fundamentals of Neural Network Modeling written by Randolph W. Parks and published by MIT Press. This book was released on 1998 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. Over the past few years, computer modeling has become more prevalent in the clinical sciences as an alternative to traditional symbol-processing models. This book provides an introduction to the neural network modeling of complex cognitive and neuropsychological processes. It is intended to make the neural network approach accessible to practicing neuropsychologists, psychologists, neurologists, and psychiatrists. It will also be a useful resource for computer scientists, mathematicians, and interdisciplinary cognitive neuroscientists. The editors (in their introduction) and contributors explain the basic concepts behind modeling and avoid the use of high-level mathematics. The book is divided into four parts. Part I provides an extensive but basic overview of neural network modeling, including its history, present, and future trends. It also includes chapters on attention, memory, and primate studies. Part II discusses neural network models of behavioral states such as alcohol dependence, learned helplessness, depression, and waking and sleeping. Part III presents neural network models of neuropsychological tests such as the Wisconsin Card Sorting Task, the Tower of Hanoi, and the Stroop Test. Finally, part IV describes the application of neural network models to dementia: models of acetycholine and memory, verbal fluency, Parkinsons disease, and Alzheimer's disease. Contributors J. Wesson Ashford, Rajendra D. Badgaiyan, Jean P. Banquet, Yves Burnod, Nelson Butters, John Cardoso, Agnes S. Chan, Jean-Pierre Changeux, Kerry L. Coburn, Jonathan D. Cohen, Laurent Cohen, Jose L. Contreras-Vidal, Antonio R. Damasio, Hanna Damasio, Stanislas Dehaene, Martha J. Farah, Joaquin M. Fuster, Philippe Gaussier, Angelika Gissler, Dylan G. Harwood, Michael E. Hasselmo, J, Allan Hobson, Sam Leven, Daniel S. Levine, Debra L. Long, Roderick K. Mahurin, Raymond L. Ownby, Randolph W. Parks, Michael I. Posner, David P. Salmon, David Servan-Schreiber, Chantal E. Stern, Jeffrey P. Sutton, Lynette J. Tippett, Daniel Tranel, Bradley Wyble

Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Download Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3662577151
Total Pages : 742 pages
Book Rating : 4.6/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence by : Nikola K. Kasabov

Download or read book Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence written by Nikola K. Kasabov and published by Springer. This book was released on 2018-08-29 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spiking neural networks (SNN) are biologically inspired computational models that represent and process information internally as trains of spikes. This monograph book presents the classical theory and applications of SNN, including original author’s contribution to the area. The book introduces for the first time not only deep learning and deep knowledge representation in the human brain and in brain-inspired SNN, but takes that further to develop new types of AI systems, called in the book brain-inspired AI (BI-AI). BI-AI systems are illustrated on: cognitive brain data, including EEG, fMRI and DTI; audio-visual data; brain-computer interfaces; personalized modelling in bio-neuroinformatics; multisensory streaming data modelling in finance, environment and ecology; data compression; neuromorphic hardware implementation. Future directions, such as the integration of multiple modalities, such as quantum-, molecular- and brain information processing, is presented in the last chapter. The book is a research book for postgraduate students, researchers and practitioners across wider areas, including computer and information sciences, engineering, applied mathematics, bio- and neurosciences.

Handbook of Natural Computing

Download Handbook of Natural Computing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783540929093
Total Pages : 2052 pages
Book Rating : 4.9/5 (29 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Natural Computing by : Grzegorz Rozenberg

Download or read book Handbook of Natural Computing written by Grzegorz Rozenberg and published by Springer. This book was released on 2012-07-09 with total page 2052 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.

The Handbook of Brain Theory and Neural Networks

Download The Handbook of Brain Theory and Neural Networks PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262011972
Total Pages : 1328 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis The Handbook of Brain Theory and Neural Networks by : Michael A. Arbib

Download or read book The Handbook of Brain Theory and Neural Networks written by Michael A. Arbib and published by MIT Press. This book was released on 2003 with total page 1328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition presents the enormous progress made in recent years in the many subfields related to the two great questions : how does the brain work? and, How can we build intelligent machines? This second edition greatly increases the coverage of models of fundamental neurobiology, cognitive neuroscience, and neural network approaches to language. (Midwest).

Artificial Neural Networks in Pattern Recognition

Download Artificial Neural Networks in Pattern Recognition PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642332129
Total Pages : 253 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Artificial Neural Networks in Pattern Recognition by : Nadia Mana

Download or read book Artificial Neural Networks in Pattern Recognition written by Nadia Mana and published by Springer. This book was released on 2012-09-11 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 5th INNS IAPR TC3 GIRPR International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2012, held in Trento, Italy, in September 2012. The 21 revised full papers presented were carefully reviewed and selected for inclusion in this volume. They cover a large range of topics in the field of neural network- and machine learning-based pattern recognition presenting and discussing the latest research, results, and ideas in these areas.

Neural Information Processing

Download Neural Information Processing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642420516
Total Pages : 655 pages
Book Rating : 4.6/5 (424 download)

DOWNLOAD NOW!


Book Synopsis Neural Information Processing by : Minho Lee

Download or read book Neural Information Processing written by Minho Lee and published by Springer. This book was released on 2013-10-29 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three volume set LNCS 8226, LNCS 8227, and LNCS 8228 constitutes the proceedings of the 20th International Conference on Neural Information Processing, ICONIP 2013, held in Daegu, Korea, in November 2013. The 180 full and 75 poster papers presented together with 4 extended abstracts were carefully reviewed and selected from numerous submissions. These papers cover all major topics of theoretical research, empirical study and applications of neural information processing research. The specific topics covered are as follows: cognitive science and artificial intelligence; learning theory, algorithms and architectures; computational neuroscience and brain imaging; vision, speech and signal processing; control, robotics and hardware technologies and novel approaches and applications.

Advances in Machine Learning II

Download Advances in Machine Learning II PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642051790
Total Pages : 530 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Advances in Machine Learning II by : Jacek Koronacki

Download or read book Advances in Machine Learning II written by Jacek Koronacki and published by Springer. This book was released on 2009-11-27 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Professor Richard S. Michalski passed away on September 20, 2007. Once we learned about his untimely death we immediately realized that we would no longer have with us a truly exceptional scholar and researcher who for several decades had been inf- encing the work of numerous scientists all over the world - not only in his area of exp- tise, notably machine learning, but also in the broadly understood areas of data analysis, data mining, knowledge discovery and many others. In fact, his influence was even much broader due to his creative vision, integrity, scientific excellence and excepti- ally wide intellectual horizons which extended to history, political science and arts. Professor Michalski’s death was a particularly deep loss to the whole Polish sci- tific community and the Polish Academy of Sciences in particular. After graduation, he began his research career at the Institute of Automatic Control, Polish Academy of Science in Warsaw. In 1970 he left his native country and hold various prestigious positions at top US universities. His research gained impetus and he soon established himself as a world authority in his areas of interest – notably, he was widely cons- ered a father of machine learning.

Advances in Neuro-Information Processing

Download Advances in Neuro-Information Processing PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642024904
Total Pages : 1273 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Advances in Neuro-Information Processing by : Mario Köppen

Download or read book Advances in Neuro-Information Processing written by Mario Köppen and published by Springer. This book was released on 2009-07-30 with total page 1273 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two volume set LNCS 5506 and LNCS 5507 constitutes the thoroughly refereed post-conference proceedings of the 15th International Conference on Neural Information Processing, ICONIP 2008, held in Auckland, New Zealand, in November 2008. The 260 revised full papers presented were carefully reviewed and selected from numerous ordinary paper submissions and 15 special organized sessions. 116 papers are published in the first volume and 112 in the second volume. The contributions deal with topics in the areas of data mining methods for cybersecurity, computational models and their applications to machine learning and pattern recognition, lifelong incremental learning for intelligent systems, application of intelligent methods in ecological informatics, pattern recognition from real-world information by svm and other sophisticated techniques, dynamics of neural networks, recent advances in brain-inspired technologies for robotics, neural information processing in cooperative multi-robot systems.

Models of Wave Memory

Download Models of Wave Memory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319198661
Total Pages : 260 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Models of Wave Memory by : Serguey Kashchenko

Download or read book Models of Wave Memory written by Serguey Kashchenko and published by Springer. This book was released on 2015-10-06 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph examines in detail models of neural systems described by delay-differential equations. Each element of the medium (neuron) is an oscillator that generates, in standalone mode, short impulses also known as spikes. The book discusses models of synaptic interaction between neurons, which lead to complex oscillatory modes in the system. In addition, it presents a solution to the problem of choosing the parameters of interaction in order to obtain attractors with predetermined structure. These attractors are represented as images encoded in the form of autowaves (wave memory). The target audience primarily comprises researchers and experts in the field, but it will also be beneficial for graduate students.

Theoretical Neuroscience

Download Theoretical Neuroscience PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262541858
Total Pages : 477 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Theoretical Neuroscience by : Peter Dayan

Download or read book Theoretical Neuroscience written by Peter Dayan and published by MIT Press. This book was released on 2005-08-12 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical neuroscience provides a quantitative basis for describing what nervous systems do, determining how they function, and uncovering the general principles by which they operate. This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory. The book is divided into three parts. Part I discusses the relationship between sensory stimuli and neural responses, focusing on the representation of information by the spiking activity of neurons. Part II discusses the modeling of neurons and neural circuits on the basis of cellular and synaptic biophysics. Part III analyzes the role of plasticity in development and learning. An appendix covers the mathematical methods used, and exercises are available on the book's Web site.

Brain Mapping

Download Brain Mapping PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0123973163
Total Pages : 2668 pages
Book Rating : 4.1/5 (239 download)

DOWNLOAD NOW!


Book Synopsis Brain Mapping by :

Download or read book Brain Mapping written by and published by Academic Press. This book was released on 2015-02-14 with total page 2668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brain Mapping: A Comprehensive Reference, Three Volume Set offers foundational information for students and researchers across neuroscience. With over 300 articles and a media rich environment, this resource provides exhaustive coverage of the methods and systems involved in brain mapping, fully links the data to disease (presenting side by side maps of healthy and diseased brains for direct comparisons), and offers data sets and fully annotated color images. Each entry is built on a layered approach of the content – basic information for those new to the area and more detailed material for experienced readers. Edited and authored by the leading experts in the field, this work offers the most reputable, easily searchable content with cross referencing across articles, a one-stop reference for students, researchers and teaching faculty. Broad overview of neuroimaging concepts with applications across the neurosciences and biomedical research Fully annotated color images and videos for best comprehension of concepts Layered content for readers of different levels of expertise Easily searchable entries for quick access of reputable information Live reference links to ScienceDirect, Scopus and PubMed

Artificial Neural Networks as Models of Neural Information Processing

Download Artificial Neural Networks as Models of Neural Information Processing PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889454010
Total Pages : 220 pages
Book Rating : 4.8/5 (894 download)

DOWNLOAD NOW!


Book Synopsis Artificial Neural Networks as Models of Neural Information Processing by : Marcel van Gerven

Download or read book Artificial Neural Networks as Models of Neural Information Processing written by Marcel van Gerven and published by Frontiers Media SA. This book was released on 2018-02-01 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern neural networks gave rise to major breakthroughs in several research areas. In neuroscience, we are witnessing a reappraisal of neural network theory and its relevance for understanding information processing in biological systems. The research presented in this book provides various perspectives on the use of artificial neural networks as models of neural information processing. We consider the biological plausibility of neural networks, performance improvements, spiking neural networks and the use of neural networks for understanding brain function.

Micro-, Meso- and Macro-Dynamics of the Brain

Download Micro-, Meso- and Macro-Dynamics of the Brain PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319288024
Total Pages : 181 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Micro-, Meso- and Macro-Dynamics of the Brain by : György Buzsáki

Download or read book Micro-, Meso- and Macro-Dynamics of the Brain written by György Buzsáki and published by Springer. This book was released on 2016-05-02 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together leading investigators who represent various aspects of brain dynamics with the goal of presenting state-of-the-art current progress and address future developments. The individual chapters cover several fascinating facets of contemporary neuroscience from elementary computation of neurons, mesoscopic network oscillations, internally generated assembly sequences in the service of cognition, large-scale neuronal interactions within and across systems, the impact of sleep on cognition, memory, motor-sensory integration, spatial navigation, large-scale computation and consciousness. Each of these topics require appropriate levels of analyses with sufficiently high temporal and spatial resolution of neuronal activity in both local and global networks, supplemented by models and theories to explain how different levels of brain dynamics interact with each other and how the failure of such interactions results in neurologic and mental disease. While such complex questions cannot be answered exhaustively by a dozen or so chapters, this volume offers a nice synthesis of current thinking and work-in-progress on micro-, meso- and macro- dynamics of the brain.

Mastering Machine Learning Algorithms

Download Mastering Machine Learning Algorithms PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788625900
Total Pages : 567 pages
Book Rating : 4.7/5 (886 download)

DOWNLOAD NOW!


Book Synopsis Mastering Machine Learning Algorithms by : Giuseppe Bonaccorso

Download or read book Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and published by Packt Publishing Ltd. This book was released on 2018-05-25 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.

Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence

Download Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642040195
Total Pages : 1142 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence by : De-Shuang Huang

Download or read book Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence written by De-Shuang Huang and published by Springer Science & Business Media. This book was released on 2009-08-28 with total page 1142 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Conference on Intelligent Computing (ICIC) was formed to provide an annual forum dedicated to the emerging and challenging topics in artificial intelligence, machine learning, bioinformatics, and computational biology, etc. It aims to bring - gether researchers and practitioners from both academia and industry to share ideas, problems, and solutions related to the multifaceted aspects of intelligent computing. ICIC 2009, held in Ulsan, Korea, September 16-19, 2009, constituted the 5th - ternational Conference on Intelligent Computing. It built upon the success of ICIC 2008, ICIC 2007, ICIC 2006, and ICIC 2005 held in Shanghai, Qingdao, Kunming, and Hefei, China, 2008, 2007, 2006, and 2005, respectively. This year, the conference concentrated mainly on the theories and methodologies as well as the emerging applications of intelligent computing. Its aim was to unify the p- ture of contemporary intelligent computing techniques as an integral concept that hi- lights the trends in advanced computational intelligence and bridges theoretical research with applications. Therefore, the theme for this conference was “Emerging Intelligent Computing Technology and Applications.” Papers focusing on this theme were solicited, addressing theories, methodologies, and applications in science and technology.