Partial Differential Relations

Download Partial Differential Relations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662022672
Total Pages : 372 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Relations by : Misha Gromov

Download or read book Partial Differential Relations written by Misha Gromov and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical theory of partial differential equations is rooted in physics, where equations (are assumed to) describe the laws of nature. Law abiding functions, which satisfy such an equation, are very rare in the space of all admissible functions (regardless of a particular topology in a function space). Moreover, some additional (like initial or boundary) conditions often insure the uniqueness of solutions. The existence of these is usually established with some apriori estimates which locate a possible solution in a given function space. We deal in this book with a completely different class of partial differential equations (and more general relations) which arise in differential geometry rather than in physics. Our equations are, for the most part, undetermined (or, at least, behave like those) and their solutions are rather dense in spaces of functions. We solve and classify solutions of these equations by means of direct (and not so direct) geometric constructions. Our exposition is elementary and the proofs of the basic results are selfcontained. However, there is a number of examples and exercises (of variable difficulty), where the treatment of a particular equation requires a certain knowledge of pertinent facts in the surrounding field. The techniques we employ, though quite general, do not cover all geometrically interesting equations. The border of the unexplored territory is marked by a number of open questions throughout the book.

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470054565
Total Pages : 467 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Walter A. Strauss

Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Beyond Partial Differential Equations

Download Beyond Partial Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540711295
Total Pages : 291 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Beyond Partial Differential Equations by : Horst Reinhard Beyer

Download or read book Beyond Partial Differential Equations written by Horst Reinhard Beyer and published by Springer. This book was released on 2007-04-10 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the treatment of linear and nonlinear (quasi-linear) abstract evolution equations by methods from the theory of strongly continuous semigroups. The theoretical part is accessible to graduate students with basic knowledge in functional analysis, with only some examples requiring more specialized knowledge from the spectral theory of linear, self-adjoint operators in Hilbert spaces. Emphasis is placed on equations of the hyperbolic type which are less often treated in the literature.

Partial Differential Equations in Action

Download Partial Differential Equations in Action PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319150936
Total Pages : 714 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations in Action by : Sandro Salsa

Download or read book Partial Differential Equations in Action written by Sandro Salsa and published by Springer. This book was released on 2015-04-24 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.

Partial Differential Equations and Group Theory

Download Partial Differential Equations and Group Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 940172539X
Total Pages : 481 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations and Group Theory by : J.F. Pommaret

Download or read book Partial Differential Equations and Group Theory written by J.F. Pommaret and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE). The various con cepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been re cently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding con cepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differ ential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control the ory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Download Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387709142
Total Pages : 600 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis

Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Partial Differential Equations

Download Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461448093
Total Pages : 416 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations by : Jürgen Jost

Download or read book Partial Differential Equations written by Jürgen Jost and published by Springer Science & Business Media. This book was released on 2012-11-13 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an ideal graduate-level introduction to the theory of partial differential equations. The first part of the book describes the basic mathematical problems and structures associated with elliptic, parabolic, and hyperbolic partial differential equations, and explores the connections between these fundamental types. Aspects of Brownian motion or pattern formation processes are also presented. The second part focuses on existence schemes and develops estimates for solutions of elliptic equations, such as Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. In particular, the reader will learn the basic techniques underlying current research in elliptic partial differential equations. This revised and expanded third edition is enhanced with many additional examples that will help motivate the reader. New features include a reorganized and extended chapter on hyperbolic equations, as well as a new chapter on the relations between different types of partial differential equations, including first-order hyperbolic systems, Langevin and Fokker-Planck equations, viscosity solutions for elliptic PDEs, and much more. Also, the new edition contains additional material on systems of elliptic partial differential equations, and it explains in more detail how the Harnack inequality can be used for the regularity of solutions.

Nonlinear partial differential equations in differential geometry

Download Nonlinear partial differential equations in differential geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821804315
Total Pages : 356 pages
Book Rating : 4.8/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear partial differential equations in differential geometry by : Robert Hardt

Download or read book Nonlinear partial differential equations in differential geometry written by Robert Hardt and published by American Mathematical Soc.. This book was released on 1996 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains lecture notes of minicourses at the Regional Geometry Institute at Park City, Utah, in July 1992. Presented here are surveys of breaking developments in a number of areas of nonlinear partial differential equations in differential geometry. The authors of the articles are not only excellent expositors, but are also leaders in this field of research. All of the articles provide in-depth treatment of the topics and require few prerequisites and less background than current research articles.

Partial Differential Equations in Classical Mathematical Physics

Download Partial Differential Equations in Classical Mathematical Physics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521558464
Total Pages : 704 pages
Book Rating : 4.5/5 (584 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations in Classical Mathematical Physics by : Isaak Rubinstein

Download or read book Partial Differential Equations in Classical Mathematical Physics written by Isaak Rubinstein and published by Cambridge University Press. This book was released on 1998-04-28 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.

Optimal Control of Partial Differential Equations

Download Optimal Control of Partial Differential Equations PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470476444
Total Pages : 417 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Optimal Control of Partial Differential Equations by : Fredi Tröltzsch

Download or read book Optimal Control of Partial Differential Equations written by Fredi Tröltzsch and published by American Mathematical Society. This book was released on 2024-03-21 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal control theory is concerned with finding control functions that minimize cost functions for systems described by differential equations. The methods have found widespread applications in aeronautics, mechanical engineering, the life sciences, and many other disciplines. This book focuses on optimal control problems where the state equation is an elliptic or parabolic partial differential equation. Included are topics such as the existence of optimal solutions, necessary optimality conditions and adjoint equations, second-order sufficient conditions, and main principles of selected numerical techniques. It also contains a survey on the Karush-Kuhn-Tucker theory of nonlinear programming in Banach spaces. The exposition begins with control problems with linear equations, quadratic cost functions and control constraints. To make the book self-contained, basic facts on weak solutions of elliptic and parabolic equations are introduced. Principles of functional analysis are introduced and explained as they are needed. Many simple examples illustrate the theory and its hidden difficulties. This start to the book makes it fairly self-contained and suitable for advanced undergraduates or beginning graduate students. Advanced control problems for nonlinear partial differential equations are also discussed. As prerequisites, results on boundedness and continuity of solutions to semilinear elliptic and parabolic equations are addressed. These topics are not yet readily available in books on PDEs, making the exposition also interesting for researchers. Alongside the main theme of the analysis of problems of optimal control, Tröltzsch also discusses numerical techniques. The exposition is confined to brief introductions into the basic ideas in order to give the reader an impression of how the theory can be realized numerically. After reading this book, the reader will be familiar with the main principles of the numerical analysis of PDE-constrained optimization.

Stochastic Differential Equations, Backward SDEs, Partial Differential Equations

Download Stochastic Differential Equations, Backward SDEs, Partial Differential Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319057146
Total Pages : 680 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Differential Equations, Backward SDEs, Partial Differential Equations by : Etienne Pardoux

Download or read book Stochastic Differential Equations, Backward SDEs, Partial Differential Equations written by Etienne Pardoux and published by Springer. This book was released on 2014-06-24 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research monograph presents results to researchers in stochastic calculus, forward and backward stochastic differential equations, connections between diffusion processes and second order partial differential equations (PDEs), and financial mathematics. It pays special attention to the relations between SDEs/BSDEs and second order PDEs under minimal regularity assumptions, and also extends those results to equations with multivalued coefficients. The authors present in particular the theory of reflected SDEs in the above mentioned framework and include exercises at the end of each chapter. Stochastic calculus and stochastic differential equations (SDEs) were first introduced by K. Itô in the 1940s, in order to construct the path of diffusion processes (which are continuous time Markov processes with continuous trajectories taking their values in a finite dimensional vector space or manifold), which had been studied from a more analytic point of view by Kolmogorov in the 1930s. Since then, this topic has become an important subject of Mathematics and Applied Mathematics, because of its mathematical richness and its importance for applications in many areas of Physics, Biology, Economics and Finance, where random processes play an increasingly important role. One important aspect is the connection between diffusion processes and linear partial differential equations of second order, which is in particular the basis for Monte Carlo numerical methods for linear PDEs. Since the pioneering work of Peng and Pardoux in the early 1990s, a new type of SDEs called backward stochastic differential equations (BSDEs) has emerged. The two main reasons why this new class of equations is important are the connection between BSDEs and semilinear PDEs, and the fact that BSDEs constitute a natural generalization of the famous Black and Scholes model from Mathematical Finance, and thus offer a natural mathematical framework for the formulation of many new models in Finance.

Introduction to Partial Differential Equations with Applications

Download Introduction to Partial Differential Equations with Applications PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 048613217X
Total Pages : 434 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Partial Differential Equations with Applications by : E. C. Zachmanoglou

Download or read book Introduction to Partial Differential Equations with Applications written by E. C. Zachmanoglou and published by Courier Corporation. This book was released on 2012-04-20 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

Partial Differential Equations I

Download Partial Differential Equations I PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 144197055X
Total Pages : 673 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations I by : Michael E. Taylor

Download or read book Partial Differential Equations I written by Michael E. Taylor and published by Springer Science & Business Media. This book was released on 2010-10-29 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.

Second Order Partial Differential Equations in Hilbert Spaces

Download Second Order Partial Differential Equations in Hilbert Spaces PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521777292
Total Pages : 206 pages
Book Rating : 4.7/5 (772 download)

DOWNLOAD NOW!


Book Synopsis Second Order Partial Differential Equations in Hilbert Spaces by : Giuseppe Da Prato

Download or read book Second Order Partial Differential Equations in Hilbert Spaces written by Giuseppe Da Prato and published by Cambridge University Press. This book was released on 2002-07-25 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Second order linear parabolic and elliptic equations arise frequently in mathematics and other disciplines. For example parabolic equations are to be found in statistical mechanics and solid state theory, their infinite dimensional counterparts are important in fluid mechanics, mathematical finance and population biology, whereas nonlinear parabolic equations arise in control theory. Here the authors present a state of the art treatment of the subject from a new perspective. The main tools used are probability measures in Hilbert and Banach spaces and stochastic evolution equations. There is then a discussion of how the results in the book can be applied to control theory. This area is developing very rapidly and there are numerous notes and references that point the reader to more specialised results not covered in the book. Coverage of some essential background material will help make the book self-contained and increase its appeal to those entering the subject.

Partial Differential Equations of Applied Mathematics

Download Partial Differential Equations of Applied Mathematics PDF Online Free

Author :
Publisher : Wiley-Interscience
ISBN 13 : 9780471315162
Total Pages : 0 pages
Book Rating : 4.3/5 (151 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations of Applied Mathematics by : Erich Zauderer

Download or read book Partial Differential Equations of Applied Mathematics written by Erich Zauderer and published by Wiley-Interscience. This book was released on 1998-08-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only comprehensive guide to modeling, characterizing, and solving partial differential equations This classic text by Erich Zauderer provides a comprehensive account of partial differential equations and their applications. Dr. Zauderer develops mathematical models that give rise to partial differential equations and describes classical and modern solution techniques. With an emphasis on practical applications, he makes liberal use of real-world examples, explores both linear and nonlinear problems, and provides approximate as well as exact solutions. He also describes approximation methods for simplifying complicated solutions and for solving linear and nonlinear problems not readily solved by standard methods. The book begins with a demonstration of how the three basic types of equations (parabolic, hyperbolic, and elliptic) can be derived from random walk models. It continues in a less statistical vein to cover an exceptionally broad range of topics, including stabilities, singularities, transform methods, the use of Green's functions, and perturbation and asymptotic treatments. Features that set Partial Differential Equations of Applied Mathematics, Second Edition above all other texts in the field include: Coverage of random walk problems, discontinuous and singular solutions, and perturbation and asymptotic methods More than 800 practice exercises, many of which are fully worked out Numerous up-to-date examples from engineering and the physical sciences Partial Differential Equations of Applied Mathematics, Second Edition is a superior advanced-undergraduate to graduate-level text for students in engineering, the sciences, and applied mathematics. The title is also a valuable working resource for professionals in these fields. Dr. Zauderer received his doctorate in mathematics from the New York University-Courant Institute. Prior to joining the staff of Polytechnic University, he was a Senior Weitzmann Fellow of the Weitzmann Institute of Science in Rehovot, Israel.

Partial Differential Equations with Fourier Series and Boundary Value Problems

Download Partial Differential Equations with Fourier Series and Boundary Value Problems PDF Online Free

Author :
Publisher : Courier Dover Publications
ISBN 13 : 0486820831
Total Pages : 818 pages
Book Rating : 4.4/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations with Fourier Series and Boundary Value Problems by : Nakhle H. Asmar

Download or read book Partial Differential Equations with Fourier Series and Boundary Value Problems written by Nakhle H. Asmar and published by Courier Dover Publications. This book was released on 2017-03-23 with total page 818 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rich in proofs, examples, and exercises, this widely adopted text emphasizes physics and engineering applications. The Student Solutions Manual can be downloaded free from Dover's site; instructions for obtaining the Instructor Solutions Manual is included in the book. 2004 edition, with minor revisions.

An Introduction to Nonlinear Partial Differential Equations

Download An Introduction to Nonlinear Partial Differential Equations PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470225955
Total Pages : 416 pages
Book Rating : 4.4/5 (72 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Nonlinear Partial Differential Equations by : J. David Logan

Download or read book An Introduction to Nonlinear Partial Differential Equations written by J. David Logan and published by John Wiley & Sons. This book was released on 2008-04-11 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition: "This book is well conceived and well written. The author has succeeded in producing a text on nonlinear PDEs that is not only quite readable but also accessible to students from diverse backgrounds." —SIAM Review A practical introduction to nonlinear PDEs and their real-world applications Now in a Second Edition, this popular book on nonlinear partial differential equations (PDEs) contains expanded coverage on the central topics of applied mathematics in an elementary, highly readable format and is accessible to students and researchers in the field of pure and applied mathematics. This book provides a new focus on the increasing use of mathematical applications in the life sciences, while also addressing key topics such as linear PDEs, first-order nonlinear PDEs, classical and weak solutions, shocks, hyperbolic systems, nonlinear diffusion, and elliptic equations. Unlike comparable books that typically only use formal proofs and theory to demonstrate results, An Introduction to Nonlinear Partial Differential Equations, Second Edition takes a more practical approach to nonlinear PDEs by emphasizing how the results are used, why they are important, and how they are applied to real problems. The intertwining relationship between mathematics and physical phenomena is discovered using detailed examples of applications across various areas such as biology, combustion, traffic flow, heat transfer, fluid mechanics, quantum mechanics, and the chemical reactor theory. New features of the Second Edition also include: Additional intermediate-level exercises that facilitate the development of advanced problem-solving skills New applications in the biological sciences, including age-structure, pattern formation, and the propagation of diseases An expanded bibliography that facilitates further investigation into specialized topics With individual, self-contained chapters and a broad scope of coverage that offers instructors the flexibility to design courses to meet specific objectives, An Introduction to Nonlinear Partial Differential Equations, Second Edition is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs.