Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Optimization Of A Star Pattern Recognition Algorithm For An Intelligent Star Tracker Using A Multi Objective Genetic Algorithm
Download Optimization Of A Star Pattern Recognition Algorithm For An Intelligent Star Tracker Using A Multi Objective Genetic Algorithm full books in PDF, epub, and Kindle. Read online Optimization Of A Star Pattern Recognition Algorithm For An Intelligent Star Tracker Using A Multi Objective Genetic Algorithm ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Multi-Objective Optimization using Evolutionary Algorithms by : Kalyanmoy Deb
Download or read book Multi-Objective Optimization using Evolutionary Algorithms written by Kalyanmoy Deb and published by John Wiley & Sons. This book was released on 2001-07-05 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimierung mit mehreren Zielen, evolutionäre Algorithmen: Dieses Buch wendet sich vorrangig an Einsteiger, denn es werden kaum Vorkenntnisse vorausgesetzt. Geboten werden alle notwendigen Grundlagen, um die Theorie auf Probleme der Ingenieurtechnik, der Vorhersage und der Planung anzuwenden. Der Autor gibt auch einen Ausblick auf Forschungsaufgaben der Zukunft.
Book Synopsis Ant Colony Optimization by : Marco Dorigo
Download or read book Ant Colony Optimization written by Marco Dorigo and published by MIT Press. This book was released on 2004-06-04 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.
Book Synopsis Artificial Intelligence in Healthcare by : Adam Bohr
Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Book Synopsis Particle Swarm Optimization and Intelligence: Advances and Applications by : Parsopoulos, Konstantinos E.
Download or read book Particle Swarm Optimization and Intelligence: Advances and Applications written by Parsopoulos, Konstantinos E. and published by IGI Global. This book was released on 2010-01-31 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book presents the most recent and established developments of Particle swarm optimization (PSO) within a unified framework by noted researchers in the field"--Provided by publisher.
Book Synopsis Genetic Algorithm Essentials by : Oliver Kramer
Download or read book Genetic Algorithm Essentials written by Oliver Kramer and published by Springer. This book was released on 2017-01-07 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.
Book Synopsis Research Anthology on Multi-industry Uses of Genetic Programming and Algorithms by : Information Resources Management Association
Download or read book Research Anthology on Multi-industry Uses of Genetic Programming and Algorithms written by Information Resources Management Association and published by . This book was released on 2020-12-05 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book of research chapters explores the technology, uses, and implementation of genetic programming and algorithms across multiple industries creating a fundamental understanding of this technology, and how genetic programming and algorithms are implemented in fields such as healthcare, engineering, social sciences, computer science and more"--
Book Synopsis Hybrid Evolutionary Algorithms by : Crina Grosan
Download or read book Hybrid Evolutionary Algorithms written by Crina Grosan and published by Springer. This book was released on 2007-08-29 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume is targeted at presenting the latest state-of-the-art methodologies in "Hybrid Evolutionary Algorithms". The chapters deal with the theoretical and methodological aspects, as well as various applications to many real world problems from science, technology, business or commerce. Overall, the book has 14 chapters including an introductory chapter giving the fundamental definitions and some important research challenges. The contributions were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.
Book Synopsis Gaussian Processes for Machine Learning by : Carl Edward Rasmussen
Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.
Book Synopsis International Aerospace Abstracts by :
Download or read book International Aerospace Abstracts written by and published by . This book was released on 1998 with total page 920 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Estimation of Distribution Algorithms by : Pedro Larrañaga
Download or read book Estimation of Distribution Algorithms written by Pedro Larrañaga and published by Springer Science & Business Media. This book was released on 2001-10-31 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is devoted to a new paradigm for evolutionary computation, named estimation of distribution algorithms (EDAs). This new class of algorithms generalizes genetic algorithms by replacing the crossover and mutation operators with learning and sampling from the probability distribution of the best individuals of the population at each iteration of the algorithm. Working in such a way, the relationships between the variables involved in the problem domain are explicitly and effectively captured and exploited. This text constitutes the first compilation and review of the techniques and applications of this new tool for performing evolutionary computation. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is clearly divided into three parts. Part I is dedicated to the foundations of EDAs. In this part, after introducing some probabilistic graphical models - Bayesian and Gaussian networks - a review of existing EDA approaches is presented, as well as some new methods based on more flexible probabilistic graphical models. A mathematical modeling of discrete EDAs is also presented. Part II covers several applications of EDAs in some classical optimization problems: the travelling salesman problem, the job scheduling problem, and the knapsack problem. EDAs are also applied to the optimization of some well-known combinatorial and continuous functions. Part III presents the application of EDAs to solve some problems that arise in the machine learning field: feature subset selection, feature weighting in K-NN classifiers, rule induction, partial abductive inference in Bayesian networks, partitional clustering, and the search for optimal weights in artificial neural networks. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation is a useful and interesting tool for researchers working in the field of evolutionary computation and for engineers who face real-world optimization problems. This book may also be used by graduate students and researchers in computer science. `... I urge those who are interested in EDAs to study this well-crafted book today.' David E. Goldberg, University of Illinois Champaign-Urbana.
Book Synopsis Evolutionary Algorithms and Neural Networks by : Seyedali Mirjalili
Download or read book Evolutionary Algorithms and Neural Networks written by Seyedali Mirjalili and published by Springer. This book was released on 2018-06-26 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.
Book Synopsis Principles of Robot Motion by : Howie Choset
Download or read book Principles of Robot Motion written by Howie Choset and published by MIT Press. This book was released on 2005-05-20 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts. Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.
Book Synopsis Soft Computing for Recognition Based on Biometrics by : Patricia Melin
Download or read book Soft Computing for Recognition Based on Biometrics written by Patricia Melin and published by Springer Science & Business Media. This book was released on 2010-09-20 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes bio-inspired models and applications of hybrid intelligent systems using soft computing techniques for image analysis and pattern recognition based on biometrics and other sources. Each section groups papers on a similar subject.
Book Synopsis Computational Intelligence by : Andries P. Engelbrecht
Download or read book Computational Intelligence written by Andries P. Engelbrecht and published by John Wiley & Sons. This book was released on 2007-10-22 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Intelligence: An Introduction, Second Edition offers an in-depth exploration into the adaptive mechanisms that enable intelligent behaviour in complex and changing environments. The main focus of this text is centred on the computational modelling of biological and natural intelligent systems, encompassing swarm intelligence, fuzzy systems, artificial neutral networks, artificial immune systems and evolutionary computation. Engelbrecht provides readers with a wide knowledge of Computational Intelligence (CI) paradigms and algorithms; inviting readers to implement and problem solve real-world, complex problems within the CI development framework. This implementation framework will enable readers to tackle new problems without any difficulty through a single Java class as part of the CI library. Key features of this second edition include: A tutorial, hands-on based presentation of the material. State-of-the-art coverage of the most recent developments in computational intelligence with more elaborate discussions on intelligence and artificial intelligence (AI). New discussion of Darwinian evolution versus Lamarckian evolution, also including swarm robotics, hybrid systems and artificial immune systems. A section on how to perform empirical studies; topics including statistical analysis of stochastic algorithms, and an open source library of CI algorithms. Tables, illustrations, graphs, examples, assignments, Java code implementing the algorithms, and a complete CI implementation and experimental framework. Computational Intelligence: An Introduction, Second Edition is essential reading for third and fourth year undergraduate and postgraduate students studying CI. The first edition has been prescribed by a number of overseas universities and is thus a valuable teaching tool. In addition, it will also be a useful resource for researchers in Computational Intelligence and Artificial Intelligence, as well as engineers, statisticians, operational researchers, and bioinformaticians with an interest in applying AI or CI to solve problems in their domains. Check out http://www.ci.cs.up.ac.za for examples, assignments and Java code implementing the algorithms.
Book Synopsis Evolutionary Algorithms in Intelligent Systems by : Alfredo Milani
Download or read book Evolutionary Algorithms in Intelligent Systems written by Alfredo Milani and published by MDPI. This book was released on 2020-12-07 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolutionary algorithms and metaheuristics are widely used to provide efficient and effective approximate solutions to computationally hard optimization problems. With the widespread use of intelligent systems in recent years, evolutionary algorithms have been applied, beyond classical optimization problems, to AI system parameter optimization and the design of artificial neural networks and feature selection in machine learning systems. This volume will present recent results of applications of the most successful metaheuristics, from differential evolution and particle swarm optimization to artificial neural networks, loT allocation, and multi-objective optimization problems. It will also provide a broad view of the role and the potential of evolutionary algorithms as service components in Al systems.
Download or read book The Lion Way written by Roberto Battiti and published by Createspace Independent Publishing Platform. This book was released on 2014-02-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex and dynamic problems. The LION way is about increasing the automation level and connecting data directly to decisions and actions. More power is directly in the hands of decision makers in a self-service manner, without resorting to intermediate layers of data scientists. LION is a complex array of mechanisms, like the engine in an automobile, but the user (driver) does not need to know the inner workings of the engine in order to realize its tremendous benefits. LION's adoption will create a prairie fire of innovation which will reach most businesses in the next decades. Businesses, like plants in wildfire-prone ecosystems, will survive and prosper by adapting and embracing LION techniques, or they risk being transformed from giant trees to ashes by the spreading competition.
Book Synopsis Engineering Design Optimization by : Joaquim R. R. A. Martins
Download or read book Engineering Design Optimization written by Joaquim R. R. A. Martins and published by Cambridge University Press. This book was released on 2021-11-18 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.