Analytic And Combinatorial Number Theory: The Legacy Of Ramanujan - Contributions In Honor Of Bruce C. Berndt

Download Analytic And Combinatorial Number Theory: The Legacy Of Ramanujan - Contributions In Honor Of Bruce C. Berndt PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811277389
Total Pages : 704 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Analytic And Combinatorial Number Theory: The Legacy Of Ramanujan - Contributions In Honor Of Bruce C. Berndt by : George E Andrews

Download or read book Analytic And Combinatorial Number Theory: The Legacy Of Ramanujan - Contributions In Honor Of Bruce C. Berndt written by George E Andrews and published by World Scientific. This book was released on 2024-08-19 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reflects the contributions stemming from the conference Analytic and Combinatorial Number Theory: The Legacy of Ramanujan which took place at the University of Illinois at Urbana-Champaign on June 6-9, 2019. The conference included 26 plenary talks, 71 contributed talks, and 170 participants. As was the case for the conference, this book is in honor of Bruce C Berndt and in celebration of his mathematics and his 80th birthday.Along with a number of papers previously appearing in Special Issues of the International Journal of Number Theory, the book collects together a few more papers, a biography of Bruce by Atul Dixit and Ae Ja Yee, a preface by George Andrews, a gallery of photos from the conference, a number of speeches from the conference banquet, the conference poster, a list of Bruce's publications at the time this volume was created, and a list of the talks from the conference.

The Riemann Zeta-Function

Download The Riemann Zeta-Function PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110886146
Total Pages : 409 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis The Riemann Zeta-Function by : Anatoly A. Karatsuba

Download or read book The Riemann Zeta-Function written by Anatoly A. Karatsuba and published by Walter de Gruyter. This book was released on 2011-05-03 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany

Introduction to Analytic Number Theory

Download Introduction to Analytic Number Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475755791
Total Pages : 352 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Analytic Number Theory by : Tom M. Apostol

Download or read book Introduction to Analytic Number Theory written by Tom M. Apostol and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages."-—MATHEMATICAL REVIEWS

Elementary and Analytic Theory of Algebraic Numbers

Download Elementary and Analytic Theory of Algebraic Numbers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662070014
Total Pages : 712 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Elementary and Analytic Theory of Algebraic Numbers by : Wladyslaw Narkiewicz

Download or read book Elementary and Analytic Theory of Algebraic Numbers written by Wladyslaw Narkiewicz and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details the classical part of the theory of algebraic number theory, excluding class-field theory and its consequences. Coverage includes: ideal theory in rings of algebraic integers, p-adic fields and their finite extensions, ideles and adeles, zeta-functions, distribution of prime ideals, Abelian fields, the class-number of quadratic fields, and factorization problems. The book also features exercises and a list of open problems.

Value-Distribution of L-Functions

Download Value-Distribution of L-Functions PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540448225
Total Pages : 320 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Value-Distribution of L-Functions by : Jörn Steuding

Download or read book Value-Distribution of L-Functions written by Jörn Steuding and published by Springer. This book was released on 2007-05-26 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes present recent results in the value-distribution theory of L-functions with emphasis on the phenomenon of universality. Universality has a strong impact on the zero-distribution: Riemann’s hypothesis is true only if the Riemann zeta-function can approximate itself uniformly. The text proves universality for polynomial Euler products. The authors’ approach follows mainly Bagchi's probabilistic method. Discussion touches on related topics: almost periodicity, density estimates, Nevanlinna theory, and functional independence.

Number Theory

Download Number Theory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540392793
Total Pages : 189 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Number Theory by : K. Alladi

Download or read book Number Theory written by K. Alladi and published by Springer. This book was released on 2006-11-17 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Fractal Geometry, Complex Dimensions and Zeta Functions

Download Fractal Geometry, Complex Dimensions and Zeta Functions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387352082
Total Pages : 472 pages
Book Rating : 4.3/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Fractal Geometry, Complex Dimensions and Zeta Functions by : Michel L. Lapidus

Download or read book Fractal Geometry, Complex Dimensions and Zeta Functions written by Michel L. Lapidus and published by Springer Science & Business Media. This book was released on 2007-08-08 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number theory, spectral geometry, and fractal geometry are interlinked in this study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. The Riemann hypothesis is given a natural geometric reformulation in context of vibrating fractal strings, and the book offers explicit formulas extended to apply to the geometric, spectral and dynamic zeta functions associated with a fractal.

Automorphic Forms and L-Functions for the Group GL(n,R)

Download Automorphic Forms and L-Functions for the Group GL(n,R) PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139456202
Total Pages : 65 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Automorphic Forms and L-Functions for the Group GL(n,R) by : Dorian Goldfeld

Download or read book Automorphic Forms and L-Functions for the Group GL(n,R) written by Dorian Goldfeld and published by Cambridge University Press. This book was released on 2006-08-03 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt: L-functions associated to automorphic forms encode all classical number theoretic information. They are akin to elementary particles in physics. This book provides an entirely self-contained introduction to the theory of L-functions in a style accessible to graduate students with a basic knowledge of classical analysis, complex variable theory, and algebra. Also within the volume are many new results not yet found in the literature. The exposition provides complete detailed proofs of results in an easy-to-read format using many examples and without the need to know and remember many complex definitions. The main themes of the book are first worked out for GL(2,R) and GL(3,R), and then for the general case of GL(n,R). In an appendix to the book, a set of Mathematica functions is presented, designed to allow the reader to explore the theory from a computational point of view.

Introduction to Analytic and Probabilistic Number Theory

Download Introduction to Analytic and Probabilistic Number Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521412612
Total Pages : 180 pages
Book Rating : 4.4/5 (126 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Analytic and Probabilistic Number Theory by : G. Tenenbaum

Download or read book Introduction to Analytic and Probabilistic Number Theory written by G. Tenenbaum and published by Cambridge University Press. This book was released on 1995-06-30 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained introduction to analytic methods in number theory, assuming on the part of the reader only what is typically learned in a standard undergraduate degree course. It offers to students and those beginning research a systematic and consistent account of the subject but will also be a convenient resource and reference for more experienced mathematicians. These aspects are aided by the inclusion at the end of each chapter a section of bibliographic notes and detailed exercises.

On the Zeros of a Class of Dirichlet Series

Download On the Zeros of a Class of Dirichlet Series PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 80 pages
Book Rating : 4.:/5 (38 download)

DOWNLOAD NOW!


Book Synopsis On the Zeros of a Class of Dirichlet Series by : Cornelis Gerrit Lekkerkerker

Download or read book On the Zeros of a Class of Dirichlet Series written by Cornelis Gerrit Lekkerkerker and published by . This book was released on 1955 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Research Schools on Number Theory in India

Download Research Schools on Number Theory in India PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811596204
Total Pages : 187 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Research Schools on Number Theory in India by : Purabi Mukherji

Download or read book Research Schools on Number Theory in India written by Purabi Mukherji and published by Springer Nature. This book was released on 2021-01-05 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an attempt to describe the gradual development of the major schools of research on number theory in South India, Punjab, Mumbai, Bengal, and Bihar—including the establishment of Tata Institute of Fundamental Research (TIFR), Mumbai, a landmark event in the history of research of number theory in India. Research on number theory in India during modern times started with the advent of the iconic genius Srinivasa Ramanujan, inspiring mathematicians around the world. This book discusses the national and international impact of the research made by Indian number theorists. It also includes a carefully compiled, comprehensive bibliography of major 20th century Indian number theorists making this book important from the standpoint of historic documentation and a valuable resource for researchers of the field for their literature survey. This book also briefly discusses the importance of number theory in the modern world of mathematics, including applications of the results developed by indigenous number theorists in practical fields. Since the book is written from the viewpoint of the history of science, technical jargon and mathematical expressions have been avoided as much as possible.

Nieuw Archief Voor Wiskunde

Download Nieuw Archief Voor Wiskunde PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 338 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Nieuw Archief Voor Wiskunde by :

Download or read book Nieuw Archief Voor Wiskunde written by and published by . This book was released on 1955 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt:

The Riemann Hypothesis

Download The Riemann Hypothesis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387721258
Total Pages : 543 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis The Riemann Hypothesis by : Peter B. Borwein

Download or read book The Riemann Hypothesis written by Peter B. Borwein and published by Springer Science & Business Media. This book was released on 2008 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state carefully, it can be loosely formulated as "the number of integers with an even number of prime factors is the same as the number of integers with an odd number of prime factors." The Hypothesis makes a very precise connection between two seemingly unrelated mathematical objects, namely prime numbers and the zeros of analytic functions. If solved, it would give us profound insight into number theory and, in particular, the nature of prime numbers. This book is an introduction to the theory surrounding the Riemann Hypothesis. Part I serves as a compendium of known results and as a primer for the material presented in the 20 original papers contained in Part II. The original papers place the material into historical context and illustrate the motivations for research on and around the Riemann Hypothesis. Several of these papers focus on computation of the zeta function, while others give proofs of the Prime Number Theorem, since the Prime Number Theorem is so closely connected to the Riemann Hypothesis. The text is suitable for a graduate course or seminar or simply as a reference for anyone interested in this extraordinary conjecture.

Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality

Download Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813230819
Total Pages : 494 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality by : Hafedh Herichi

Download or read book Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality written by Hafedh Herichi and published by World Scientific. This book was released on 2021-07-27 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studying the relationship between the geometry, arithmetic and spectra of fractals has been a subject of significant interest in contemporary mathematics. This book contributes to the literature on the subject in several different and new ways. In particular, the authors provide a rigorous and detailed study of the spectral operator, a map that sends the geometry of fractal strings onto their spectrum. To that effect, they use and develop methods from fractal geometry, functional analysis, complex analysis, operator theory, partial differential equations, analytic number theory and mathematical physics.Originally, M L Lapidus and M van Frankenhuijsen 'heuristically' introduced the spectral operator in their development of the theory of fractal strings and their complex dimensions, specifically in their reinterpretation of the earlier work of M L Lapidus and H Maier on inverse spectral problems for fractal strings and the Riemann hypothesis.One of the main themes of the book is to provide a rigorous framework within which the corresponding question 'Can one hear the shape of a fractal string?' or, equivalently, 'Can one obtain information about the geometry of a fractal string, given its spectrum?' can be further reformulated in terms of the invertibility or the quasi-invertibility of the spectral operator.The infinitesimal shift of the real line is first precisely defined as a differentiation operator on a family of suitably weighted Hilbert spaces of functions on the real line and indexed by a dimensional parameter c. Then, the spectral operator is defined via the functional calculus as a function of the infinitesimal shift. In this manner, it is viewed as a natural 'quantum' analog of the Riemann zeta function. More precisely, within this framework, the spectral operator is defined as the composite map of the Riemann zeta function with the infinitesimal shift, viewed as an unbounded normal operator acting on the above Hilbert space.It is shown that the quasi-invertibility of the spectral operator is intimately connected to the existence of critical zeros of the Riemann zeta function, leading to a new spectral and operator-theoretic reformulation of the Riemann hypothesis. Accordingly, the spectral operator is quasi-invertible for all values of the dimensional parameter c in the critical interval (0,1) (other than in the midfractal case when c =1/2) if and only if the Riemann hypothesis (RH) is true. A related, but seemingly quite different, reformulation of RH, due to the second author and referred to as an 'asymmetric criterion for RH', is also discussed in some detail: namely, the spectral operator is invertible for all values of c in the left-critical interval (0,1/2) if and only if RH is true.These spectral reformulations of RH also led to the discovery of several 'mathematical phase transitions' in this context, for the shape of the spectrum, the invertibility, the boundedness or the unboundedness of the spectral operator, and occurring either in the midfractal case or in the most fractal case when the underlying fractal dimension is equal to ½ or 1, respectively. In particular, the midfractal dimension c=1/2 is playing the role of a critical parameter in quantum statistical physics and the theory of phase transitions and critical phenomena.Furthermore, the authors provide a 'quantum analog' of Voronin's classical theorem about the universality of the Riemann zeta function. Moreover, they obtain and study quantized counterparts of the Dirichlet series and of the Euler product for the Riemann zeta function, which are shown to converge (in a suitable sense) even inside the critical strip.For pedagogical reasons, most of the book is devoted to the study of the quantized Riemann zeta function. However, the results obtained in this monograph are expected to lead to a quantization of most classic arithmetic zeta functions, hence, further 'naturally quantizing' various aspects of analytic number theory and arithmetic geometry.The book should be accessible to experts and non-experts alike, including mathematics and physics graduate students and postdoctoral researchers, interested in fractal geometry, number theory, operator theory and functional analysis, differential equations, complex analysis, spectral theory, as well as mathematical and theoretical physics. Whenever necessary, suitable background about the different subjects involved is provided and the new work is placed in its proper historical context. Several appendices supplementing the main text are also included.

Multiple Dirichlet Series, L-functions and Automorphic Forms

Download Multiple Dirichlet Series, L-functions and Automorphic Forms PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 0817683348
Total Pages : 367 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Multiple Dirichlet Series, L-functions and Automorphic Forms by : Daniel Bump

Download or read book Multiple Dirichlet Series, L-functions and Automorphic Forms written by Daniel Bump and published by Springer. This book was released on 2012-07-09 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiple Dirichlet Series, L-functions and Automorphic Forms gives the latest advances in the rapidly developing subject of Multiple Dirichlet Series, an area with origins in the theory of automorphic forms that exhibits surprising and deep connections to crystal graphs and mathematical physics. As such, it represents a new way in which areas including number theory, combinatorics, statistical mechanics, and quantum groups are seen to fit together. The volume also includes papers on automorphic forms and L-functions and related number-theoretic topics. This volume will be a valuable resource for graduate students and researchers in number theory, combinatorics, representation theory, mathematical physics, and special functions. Contributors: J. Beineke, B. Brubaker, D. Bump, G. Chinta, G. Cornelissen, C.A. Diaconu, S. Frechette, S. Friedberg, P. Garrett, D. Goldfeld, P.E. Gunnells, B. Heim, J. Hundley, D. Ivanov, Y. Komori, A.V. Kontorovich, O. Lorscheid, K. Matsumoto, P.J. McNamara, S.J. Patterson, M. Suzuki, H. Tsumura.

Fractal Geometry, Complex Dimensions and Zeta Functions

Download Fractal Geometry, Complex Dimensions and Zeta Functions PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461421756
Total Pages : 583 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Fractal Geometry, Complex Dimensions and Zeta Functions by : Michel Lapidus

Download or read book Fractal Geometry, Complex Dimensions and Zeta Functions written by Michel Lapidus and published by Springer Science & Business Media. This book was released on 2012-09-20 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.

Reviews in Number Theory 1973-83

Download Reviews in Number Theory 1973-83 PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 506 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Reviews in Number Theory 1973-83 by : Richard K. Guy

Download or read book Reviews in Number Theory 1973-83 written by Richard K. Guy and published by . This book was released on 1984 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: