On the Simulation of Premixed Combustion Taking Into Account Variable Mixtures

Download On the Simulation of Premixed Combustion Taking Into Account Variable Mixtures PDF Online Free

Author :
Publisher :
ISBN 13 : 9783183563067
Total Pages : 142 pages
Book Rating : 4.5/5 (63 download)

DOWNLOAD NOW!


Book Synopsis On the Simulation of Premixed Combustion Taking Into Account Variable Mixtures by : Martin Freitag

Download or read book On the Simulation of Premixed Combustion Taking Into Account Variable Mixtures written by Martin Freitag and published by . This book was released on 2007 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Turbulent Premixed Flames

Download Turbulent Premixed Flames PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139498584
Total Pages : 447 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Turbulent Premixed Flames by : Nedunchezhian Swaminathan

Download or read book Turbulent Premixed Flames written by Nedunchezhian Swaminathan and published by Cambridge University Press. This book was released on 2011-04-25 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Large Eddy Simulation of Premixed and Partially Premixed Combustion

Download Large Eddy Simulation of Premixed and Partially Premixed Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Large Eddy Simulation of Premixed and Partially Premixed Combustion by : Ionuţ Porumbel

Download or read book Large Eddy Simulation of Premixed and Partially Premixed Combustion written by Ionuţ Porumbel and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Large Eddy Simulation (LES) of bluff body stabilized premixed and partially premixed combustion close to the flammability limit is carried out in this thesis. The LES algorithm has no ad-hoc adjustable model parameters and is able to respond automatically to variations in the inflow conditions. Algorithm validation is achieved by comparison with reactive and non-reactive experimental data. In the reactive flow, two scalar closure models, Eddy Break-Up (EBULES) and Linear Eddy Mixing (LEMLES), are used and compared. Over important regions, the flame lies in the Broken Reaction Zone regime. Here, the EBU model assumptions fail. The flame thickness predicted by LEMLES is smaller and the flame is faster to respond to turbulent fluctuations, resulting in a more significant wrinkling of the flame surface. As a result, LEMLES captures better the subtle effects of the flame-turbulence interaction. Three premixed (equivalence ratio = 0.6, 0.65, and 0.75) cases are simulated. For the leaner case, the flame temperature is lower, the heat release is reduced and vorticity is stronger. As a result, the flame in this case is found to be unstable. In the rich case, the flame temperature is higher, and the spreading rate of the wake is increased due to the higher amount of heat release Partially premixed combustion is simulated for cases where the transverse profile of the inflow equivalence ratio is variable. The simulations show that for mixtures leaner in the core the vortical pattern tends towards anti-symmetry and the heat release decreases, resulting also in instability of the flame. For mixtures richer in the core, the flame displays sinusoidal flapping resulting in larger wake spreading. More accurate predictions of flame stability will require the use of detailed chemistry, raising the computational cost of the simulation. To address this issue, a novel algorithm for training Artificial Neural Networks (ANN) for prediction of the chemical source terms has been implemented and tested. Compared to earlier methods, the main advantages of the ANN method are in CPU time and disk space and memory reduction.

Modeling and Simulation of Turbulent Combustion

Download Modeling and Simulation of Turbulent Combustion PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811074100
Total Pages : 663 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Modeling and Simulation of Turbulent Combustion by : Santanu De

Download or read book Modeling and Simulation of Turbulent Combustion written by Santanu De and published by Springer. This book was released on 2017-12-12 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Fundamentals of Premixed Turbulent Combustion

Download Fundamentals of Premixed Turbulent Combustion PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466510242
Total Pages : 551 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Premixed Turbulent Combustion by : Andrei Lipatnikov

Download or read book Fundamentals of Premixed Turbulent Combustion written by Andrei Lipatnikov and published by CRC Press. This book was released on 2012-10-24 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine combustors. Yet researchers face several challenges in dealing with premixed turbulent combustion, from its nonlinear multiscale nature and the impact of local phenomena to the multitude of competing models. Filling a gap in the literature, Fundamentals of Premixed Turbulent Combustion introduces the state of the art of premixed turbulent combustion in an accessible manner for newcomers and experienced researchers alike. To more deeply consider current research issues, the book focuses on the physical mechanisms and phenomenology of premixed flames, with a brief discussion of recent advances in partially premixed turbulent combustion. It begins with a summary of the relevant knowledge needed from disciplines such as thermodynamics, chemical kinetics, molecular transport processes, and fluid dynamics. The book then presents experimental data on the general appearance of premixed turbulent flames and details the physical mechanisms that could affect the flame behavior. It also examines the physical and numerical models for predicting the key features of premixed turbulent combustion. Emphasizing critical analysis, the book compares competing concepts and viewpoints with one another and with the available experimental data, outlining the advantages and disadvantages of each approach. In addition, it discusses recent advances and highlights unresolved issues. Written by a leading expert in the field, this book provides a valuable overview of the physics of premixed turbulent combustion. Combining simplicity and topicality, it helps researchers orient themselves in the contemporary literature and guides them in selecting the best research tools for their work.

Turbulent Combustion Modeling

Download Turbulent Combustion Modeling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400704127
Total Pages : 496 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Turbulent Combustion Modeling by : Tarek Echekki

Download or read book Turbulent Combustion Modeling written by Tarek Echekki and published by Springer Science & Business Media. This book was released on 2010-12-25 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Turbulent Combustion

Download Turbulent Combustion PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139428063
Total Pages : 322 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Turbulent Combustion by : Norbert Peters

Download or read book Turbulent Combustion written by Norbert Peters and published by Cambridge University Press. This book was released on 2000-08-15 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

Turbulent Partially Premixed Combustion

Download Turbulent Partially Premixed Combustion PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (847 download)

DOWNLOAD NOW!


Book Synopsis Turbulent Partially Premixed Combustion by : S. Ruan

Download or read book Turbulent Partially Premixed Combustion written by S. Ruan and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasingly stringent regulation of pollutant emission has motivated the search for cleaner and more efficient combustion devices, which remain the primary means of power generation and propulsion for all kinds of transport. Fuel-lean premixed combustion technology has been identified to be a promising approach, despite many difficulties involve, notably issues concerning flame stability and ignitability. A partially premixed system has been introduced to remedy these problems, however, our understanding on this combustion mode needs to be greatly improved to realise its full potential. This thesis aims to further the understanding of various fundamental physical processes in turbulent partially premixed flames. DNS data of a laboratory-scale hydrogen turbulent jet lifted flame is analysed in this study. The partially premixed nature of this flame is established by examining the instantaneous and averaged reaction rates and the "Flame Index", which indicate premixed and diffusion burning modes coexisting. The behaviour of turbulent flame stretch and its relation to other physical processes, in particular the scalar-turbulence interaction, the effects of partial premixing on the displacement speed of iso-scalar surface and its correlation with the surface curvature are explored using DNS data. The scalar gradient alignment characteristics change from aligning with the most compressive strain to aligning with the most extensive one in regions of intensive heat release. This alignment change creates negative normal strain rate which can result in negative surface averaged tangential strain rate. The partial premixing affects the flame surface displacement speed through the mixture fraction dissipation rate and a second derivative in the mixture fraction space. The correlation of curvature and displacement speed is found to be negative in general and the effects of partial premixing act to reduce this negative correlation. The combined effects of the normal strain rate and the displacement speed/curvature correlation contribute to the negative mean flame stretch observed in the flame brush. Scalar dissipation rates (SDR) of the mixture fraction ẼZZ, progress variable Ẽcc and their cross dissipation rates (CDR) ẼcZ are identified as important quantities in the modelling of partially premixed flames. Their behaviours in the lifted flame stabilisation region are examined in a unified framework. It is found that SDR of mixture fraction is well below the quenching value in this region while SDR of progress variable is smaller than that in laminar flames. The CDR changes from weakly positive to negative at the flame leading edge due to the change in scalar gradient alignment characteristics. Axial and radial variation of these quantities are analysed and it is found that Ẽcc is an order of magnitude bigger than ẼZZ. ẼcZ is two orders of magnitude smaller than Ẽcc and it can be either positive or negative depending on local flow and flame conditions. Simple algebraic models show reasonable agreement compared to DNS when a suitable definition of c is used. Further statistics of the scalar gradients are presented and a presumed lognormal distribution is found to give reasonable results for their marginal PDFs and a bivariate lognormal distribution is a good approximation for their joint PDF. Four mean reaction rate closures based on presumed PDF and flamelets are assessed a priori using DNS data. The turbulent flame front structure is first compared with unstrained and strained laminar premixed and dif fusion flamelets. It is found that unstrained premixed flamelets give overall reasonable approximation in most parts of this flame. A joint PDF model which includes the correlation between mixture fraction and progress variable using a "copula" method shows excellent agreement with DNS results while their statistical independence does not hold in the burning regions of this partially premixed flame. The unstrained premixed flamelet with the correlated joint PDF method is identified to be the most appropriate model for the lifted jet flame calculation. This model is then used in the RANS simulation of turbulent jet lifted flames. A new model to include the contribution from diffusion burning and the effects of partial premixing due to SDR of mixture fraction is also identified and included in the calculation. These models are implemented in a commercial CFD code "Fluent" with user defined scalars and functions. It is found that both the correlated joint PDF model and the model accounting for the diffusive burning in partial premixing are important in order to accurately predict flame lift-off height compared to the experiments.

Direct Numerical Simulation for Turbulent Reacting Flows

Download Direct Numerical Simulation for Turbulent Reacting Flows PDF Online Free

Author :
Publisher : Editions TECHNIP
ISBN 13 : 9782710806981
Total Pages : 328 pages
Book Rating : 4.8/5 (69 download)

DOWNLOAD NOW!


Book Synopsis Direct Numerical Simulation for Turbulent Reacting Flows by : Thierry Baritaud

Download or read book Direct Numerical Simulation for Turbulent Reacting Flows written by Thierry Baritaud and published by Editions TECHNIP. This book was released on 1996 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: Description of accurate boundary conditions for the simulation of reactive flows. Parallel direct numerical simulation of turbulent reactive flow. Flame-wall interaction and heat flux modelling in turbulent channel flow. A numerical study of laminar flame wall interaction with detailed chemistry: wall temperature effects. Modeling and simulation of turbulent flame kernel evolution. Experimental and theoretical analysis of flame surface density modelling for premixed turbulent combustion. Gradient and counter-gradient transport in turbulent premixed flames. Direct numerical simulation of turbulent flames with complex chemical kinetics. Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. Numerical simulations of autoignition in turbulent mixing flows. Stabilization processes of diffusion flames. References.

Modeling and Simulation of Turbulent Mixing and Reaction

Download Modeling and Simulation of Turbulent Mixing and Reaction PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811526435
Total Pages : 273 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Modeling and Simulation of Turbulent Mixing and Reaction by : Daniel Livescu

Download or read book Modeling and Simulation of Turbulent Mixing and Reaction written by Daniel Livescu and published by Springer Nature. This book was released on 2020-02-19 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights recent research advances in the area of turbulent flows from both industry and academia for applications in the area of Aerospace and Mechanical engineering. Contributions include modeling, simulations and experiments meant for researchers, professionals and students in the area.

Combustion

Download Combustion PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540259929
Total Pages : 389 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Combustion by : J. Warnatz

Download or read book Combustion written by J. Warnatz and published by Springer Science & Business Media. This book was released on 2006-08-18 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a rigorous treatment of the coupling of chemical reactions and fluid flow. Combustion-specific topics of chemistry and fluid mechanics are considered and tools described for the simulation of combustion processes. This edition is completely restructured. Mathematical Formulae and derivations as well as the space-consuming reaction mechanisms have been replaced from the text to appendix. A new chapter discusses the impact of combustion processes on the atmosphere, the chapter on auto-ignition is extended to combustion in Otto- and Diesel-engines, and the chapters on heterogeneous combustion and on soot formation are heavily revised.

Combustion Engines Development

Download Combustion Engines Development PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642140947
Total Pages : 660 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Combustion Engines Development by : Günter P. Merker

Download or read book Combustion Engines Development written by Günter P. Merker and published by Springer Science & Business Media. This book was released on 2011-09-24 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combustion Engines Development nowadays is based on simulation, not only of the transient reaction of vehicles or of the complete driveshaft, but also of the highly unsteady processes in the carburation process and the combustion chamber of an engine. Different physical and chemical approaches are described to show the potentials and limits of the models used for simulation.

Recent Advances in Combustion Modelling

Download Recent Advances in Combustion Modelling PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810203801
Total Pages : 250 pages
Book Rating : 4.2/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Combustion Modelling by : Bernard Larrouturou

Download or read book Recent Advances in Combustion Modelling written by Bernard Larrouturou and published by World Scientific. This book was released on 1991 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers the contributions of six world experts to a course on combustion modelling. Therefore, a pedagogical effort has been made in writing up these texts, which cover state of the art advances in most aspects of combustion science. The book is aimed at students, researches and engineers, as was the course.

Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines

Download Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines PDF Online Free

Author :
Publisher : Logos Verlag Berlin GmbH
ISBN 13 : 3832542817
Total Pages : 263 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines by : Andreas Manz

Download or read book Modeling of End-Gas Autoignition for Knock Prediction in Gasoline Engines written by Andreas Manz and published by Logos Verlag Berlin GmbH. This book was released on 2016-08-18 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Downsizing of modern gasoline engines with direct injection is a key concept for achieving future CO22 emission targets. However, high power densities and optimum efficiency are limited by an uncontrolled autoignition of the unburned air-fuel mixture, the so-called spark knock phenomena. By a combination of three-dimensional Computational Fluid Dynamics (3D-CFD) and experiments incorporating optical diagnostics, this work presents an integral approach for predicting combustion and autoignition in Spark Ignition (SI) engines. The turbulent premixed combustion and flame front propagation in 3D-CFD is modeled with the G-equation combustion model, i.e. a laminar flamelet approach, in combination with the level set method. Autoignition in the unburned gas zone is modeled with the Shell model based on reduced chemical reactions using optimized reaction rate coefficients for different octane numbers (ON) as well as engine relevant pressures, temperatures and EGR rates. The basic functionality and sensitivities of improved sub-models, e.g. laminar flame speed, are proven in simplified test cases followed by adequate engine test cases. It is shown that the G-equation combustion model performs well even on unstructured grids with polyhedral cells and coarse grid resolution. The validation of the knock model with respect to temporal and spatial knock onset is done with fiber optical spark plug measurements and statistical evaluation of individual knocking cycles with a frequency based pressure analysis. The results show a good correlation with the Shell autoignition relevant species in the simulation. The combined model approach with G-equation and Shell autoignition in an active formulation enables a realistic representation of thin flame fronts and hence the thermodynamic conditions prior to knocking by taking into account the ignition chemistry in unburned gas, temperature fluctuations and self-acceleration effects due to pre-reactions. By the modeling approach and simulation methodology presented in this work the overall predictive capability for the virtual development of future knockproof SI engines is improved.

Micro-mixing in Turbulent Premixed Flames

Download Micro-mixing in Turbulent Premixed Flames PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Micro-mixing in Turbulent Premixed Flames by : Michael Joseph Kuron

Download or read book Micro-mixing in Turbulent Premixed Flames written by Michael Joseph Kuron and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate turbulent combustion models are key to establishing a predictive capability for combustion simulations at the device level. The transported probability density function (TPDF) methods provide an elegant solution to the challenge of closing the mean chemical source term in turbulent combustion modelling as it appears in closed form in the TPDF equations and thus the turbulence-chemistry interaction can be solved for without aggressive assumptions. This is crucial for predicting low temperature combustion, turbulent flames with the presence of local limit phenomena, and pollutant emissions. Despite some reported success in the literature, challenges remain when applying the TPDF method to turbulent premixed flames as the molecular mixing or micro-mixing term is unclosed, the modeling of which is considered to be a primary challenge. The objective of this dissertation is to evaluate the application of existing mixing models to turbulent premixed flames and to create high-fidelity scalar dissipation rate models to predict turbulent premixed combustion. In this dissertation, direct numerical simulation (DNS) data is utilized at each stage to obtain statistical information on the scalar dissipation rate and mixing timescales for turbulent premixed flames. In the first step, DNS of a temporally evolving premixed flame is used as a numerical test bed to evaluate commonly used mixing models in the context of turbulent premixed flames. This study demonstrates that the Euclidean Minimum Spanning Tree (EMST) model is capable of predicting the behavior of a turbulent premixed flame assuming that an accurate model for the scalar mixing rate, and thus the scalar dissipation rate, can be provided. In the next stage of the dissertation, chemical explosive mode analysis (CEMA) and DNS data with realistic chemistry are used to identify physiochemical processes that govern the conditional scalar dissipation rate behavior in a turbulent premixed flame and evaluate mixing timescales. A local Damköhler number is defined based on the CEMA results and four flame zones are identified. It is found that large fluctuations in the instantaneous scalar dissipation rate occur in the explosive zone, where the local Damköhler number is much larger than unity. Two mechanisms are identified to account for the large degree of scatter in the explosive zone: flame-flame interactions and flame-assisted ignition. A model for the Favre-averaged scalar dissipation rate is subsequently developed based on the insight gleaned from the DNS analysis. The new hybrid mixing rate model is developed to account for the scalar mixing rate behavior in both the turbulent mixing limit and the flamelet limit. The new hybrid timescale model is notable for its treatment of the flamelet mixing limit, an area where existing timescale models do not properly recover the correct mixing behavior. Comparisons to the DNS are performed with both a priori and a postereori comparisons, with the new hybrid model performing exceptionally well. Finally, in the last stage of the dissertation, a transport equation for the conditional scalar dissipation rate of a reactive scalar is derived and an order of magnitude analysis is performed to evaluate the importance of each term in the governing equation. The order of magnitude analysis is verified with the DNS data of turbulent premixed flames and an equation of the leading order terms is identified. Models for the unclosed terms in the leading order equation are developed and evaluated with DNS data, and a modelled equation for the conditional scalar dissipation rate is proposed. The modelled equation is then compared to the DNS data, and excellent agreement between the new model and the DNS is observed.

Simulating Combustion

Download Simulating Combustion PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540306269
Total Pages : 424 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Simulating Combustion by : Günter P. Merker

Download or read book Simulating Combustion written by Günter P. Merker and published by Springer Science & Business Media. This book was released on 2005-12-17 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical simulation of combustion processes in internal combustion engines, including also the formation of pollutants, has become increasingly important in the recent years, and today the simulation of those processes has already become an indispensable tool when - veloping new combustion concepts. While pure thermodynamic models are well-established tools that are in use for the simulation of the transient behavior of complex systems for a long time, the phenomenological models have become more important in the recent years and have also been implemented in these simulation programs. In contrast to this, the thr- dimensional simulation of in-cylinder combustion, i. e. the detailed, integrated and continuous simulation of the process chain injection, mixture formation, ignition, heat release due to combustion and formation of pollutants, has been significantly improved, but there is still a number of challenging problems to solve, regarding for example the exact description of s- processes like the structure of turbulence during combustion as well as the appropriate choice of the numerical grid. While chapter 2 includes a short introduction of functionality and operating modes of internal combustion engines, the basics of kinetic reactions are presented in chapter 3. In chapter 4 the physical and chemical processes taking place in the combustion chamber are described. Ch- ter 5 is about phenomenological multi-zone models, and in chapter 6 the formation of poll- ants is described.

Combustion

Download Combustion PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642980279
Total Pages : 309 pages
Book Rating : 4.6/5 (429 download)

DOWNLOAD NOW!


Book Synopsis Combustion by : Jürgen Warnatz

Download or read book Combustion written by Jürgen Warnatz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combustion is an old technology, which at present provides about 90% of our worldwide energy support. Combustion research in the past used fluid mechanics with global heat release by chemical reactions described with thermodynamics, assuming infinitely fast reactions. This approach was useful for stationary combustion processes, but it is not sufficient for transient processes like ignition and quenching or for pollutant formation. Yet pollutant formation during combustion of fossil fuels is a central topic and will continue to be so in future. This book provides a detailed and rigorous treatment of the coupling of chemical reactions and fluid flow. Also, combustion-specific topics of chemistry and fluid mechanics are considered, and tools described for the simulation of combustion processes. For the 2nd edition, the parts dealing with experiments, spray combustion, and soot were thoroughly revised.