Degenerate Elliptic Equations

Download Degenerate Elliptic Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401712158
Total Pages : 442 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Degenerate Elliptic Equations by : Serge Levendorskii

Download or read book Degenerate Elliptic Equations written by Serge Levendorskii and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the first to be devoted to the study of various properties of wide classes of degenerate elliptic operators of arbitrary order and pseudo-differential operators with multiple characteristics. Conditions for operators to be Fredholm in appropriate weighted Sobolev spaces are given, a priori estimates of solutions are derived, inequalities of the Grding type are proved, and the principal term of the spectral asymptotics for self-adjoint operators is computed. A generalization of the classical Weyl formula is proposed. Some results are new, even for operators of the second order. In addition, an analogue of the Boutet de Monvel calculus is developed and the index is computed. For postgraduate and research mathematicians, physicists and engineers whose work involves the solution of partial differential equations.

Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations

Download Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 8876426078
Total Pages : 285 pages
Book Rating : 4.8/5 (764 download)

DOWNLOAD NOW!


Book Synopsis Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations by : Maria Colombo

Download or read book Flows of Non-Smooth Vector Fields and Degenerate Elliptic Equations written by Maria Colombo and published by Springer. This book was released on 2017-06-07 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part of the book is devoted to the transport equation for a given vector field, exploiting the lagrangian structure of solutions. It also treats the regularity of solutions of some degenerate elliptic equations, which appear in the eulerian counterpart of some transport models with congestion. The second part of the book deals with the lagrangian structure of solutions of the Vlasov-Poisson system, which describes the evolution of a system of particles under the self-induced gravitational/electrostatic field, and the existence of solutions of the semigeostrophic system, used in meteorology to describe the motion of large-scale oceanic/atmospheric flows.​

Fully Nonlinear Elliptic Equations

Download Fully Nonlinear Elliptic Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821804375
Total Pages : 114 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Fully Nonlinear Elliptic Equations by : Luis A. Caffarelli

Download or read book Fully Nonlinear Elliptic Equations written by Luis A. Caffarelli and published by American Mathematical Soc.. This book was released on 1995 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.

Degenerate Diffusion Operators Arising in Population Biology

Download Degenerate Diffusion Operators Arising in Population Biology PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691157154
Total Pages : 320 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Degenerate Diffusion Operators Arising in Population Biology by : Charles L. Epstein

Download or read book Degenerate Diffusion Operators Arising in Population Biology written by Charles L. Epstein and published by Princeton University Press. This book was released on 2013-04-07 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the mathematical foundations for the analysis of a class of degenerate elliptic operators defined on manifolds with corners, which arise in a variety of applications such as population genetics, mathematical finance, and economics. The results discussed in this book prove the uniqueness of the solution to the Martingale problem and therefore the existence of the associated Markov process. Charles Epstein and Rafe Mazzeo use an "integral kernel method" to develop mathematical foundations for the study of such degenerate elliptic operators and the stochastic processes they define. The precise nature of the degeneracies of the principal symbol for these operators leads to solutions of the parabolic and elliptic problems that display novel regularity properties. Dually, the adjoint operator allows for rather dramatic singularities, such as measures supported on high codimensional strata of the boundary. Epstein and Mazzeo establish the uniqueness, existence, and sharp regularity properties for solutions to the homogeneous and inhomogeneous heat equations, as well as a complete analysis of the resolvent operator acting on Hölder spaces. They show that the semigroups defined by these operators have holomorphic extensions to the right half-plane. Epstein and Mazzeo also demonstrate precise asymptotic results for the long-time behavior of solutions to both the forward and backward Kolmogorov equations.

Partial Differential Equations in China

Download Partial Differential Equations in China PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401111987
Total Pages : 193 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Partial Differential Equations in China by : Chaohao Gu

Download or read book Partial Differential Equations in China written by Chaohao Gu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past few years there has been a fruitful exchange of expertise on the subject of partial differential equations (PDEs) between mathematicians from the People's Republic of China and the rest of the world. The goal of this collection of papers is to summarize and introduce the historical progress of the development of PDEs in China from the 1950s to the 1980s. The results presented here were mainly published before the 1980s, but, having been printed in the Chinese language, have not reached the wider audience they deserve. Topics covered include, among others, nonlinear hyperbolic equations, nonlinear elliptic equations, nonlinear parabolic equations, mixed equations, free boundary problems, minimal surfaces in Riemannian manifolds, microlocal analysis and solitons. For mathematicians and physicists interested in the historical development of PDEs in the People's Republic of China.

Elliptic Boundary Value Problems in Domains with Point Singularities

Download Elliptic Boundary Value Problems in Domains with Point Singularities PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821807544
Total Pages : 426 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Boundary Value Problems in Domains with Point Singularities by : Vladimir Kozlov

Download or read book Elliptic Boundary Value Problems in Domains with Point Singularities written by Vladimir Kozlov and published by American Mathematical Soc.. This book was released on 1997 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR

Spectral Theory And Nonlinear Analysis With Applications To Spatial Ecology

Download Spectral Theory And Nonlinear Analysis With Applications To Spatial Ecology PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814479268
Total Pages : 289 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory And Nonlinear Analysis With Applications To Spatial Ecology by : Santiago Cano-casanova

Download or read book Spectral Theory And Nonlinear Analysis With Applications To Spatial Ecology written by Santiago Cano-casanova and published by World Scientific. This book was released on 2005-09-29 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume details some of the latest advances in spectral theory and nonlinear analysis through various cutting-edge theories on algebraic multiplicities, global bifurcation theory, non-linear Schrödinger equations, non-linear boundary value problems, large solutions, metasolutions, dynamical systems, and applications to spatial ecology.The main scope of the book is bringing together a series of topics that have evolved separately during the last decades around the common denominator of spectral theory and nonlinear analysis — from the most abstract developments up to the most concrete applications to population dynamics and socio-biology — in an effort to fill the existing gaps between these fields.

Minimax Methods in Critical Point Theory with Applications to Differential Equations

Download Minimax Methods in Critical Point Theory with Applications to Differential Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821807153
Total Pages : 110 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Minimax Methods in Critical Point Theory with Applications to Differential Equations by : Paul H. Rabinowitz

Download or read book Minimax Methods in Critical Point Theory with Applications to Differential Equations written by Paul H. Rabinowitz and published by American Mathematical Soc.. This book was released on 1986-07-01 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to minimax methods in critical point theory and shows their use in existence questions for nonlinear differential equations. An expanded version of the author's 1984 CBMS lectures, this volume is the first monograph devoted solely to these topics. Among the abstract questions considered are the following: the mountain pass and saddle point theorems, multiple critical points for functionals invariant under a group of symmetries, perturbations from symmetry, and variational methods in bifurcation theory. The book requires some background in functional analysis and differential equations, especially elliptic partial differential equations. It is addressed to mathematicians interested in differential equations and/or nonlinear functional analysis, particularly critical point theory.

Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane

Download Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400830117
Total Pages : 696 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane by : Kari Astala

Download or read book Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane written by Kari Astala and published by Princeton University Press. This book was released on 2008-12-29 with total page 696 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.

Lebesgue and Sobolev Spaces with Variable Exponents

Download Lebesgue and Sobolev Spaces with Variable Exponents PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642183638
Total Pages : 516 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Lebesgue and Sobolev Spaces with Variable Exponents by : Lars Diening

Download or read book Lebesgue and Sobolev Spaces with Variable Exponents written by Lars Diening and published by Springer. This book was released on 2011-03-29 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of variable exponent function spaces has witnessed an explosive growth in recent years. The standard reference article for basic properties is already 20 years old. Thus this self-contained monograph collecting all the basic properties of variable exponent Lebesgue and Sobolev spaces is timely and provides a much-needed accessible reference work utilizing consistent notation and terminology. Many results are also provided with new and improved proofs. The book also presents a number of applications to PDE and fluid dynamics.

Degenerate Parabolic Equations

Download Degenerate Parabolic Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461208955
Total Pages : 402 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Degenerate Parabolic Equations by : Emmanuele DiBenedetto

Download or read book Degenerate Parabolic Equations written by Emmanuele DiBenedetto and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evolved from the author's lectures at the University of Bonn's Institut für angewandte Mathematik, this book reviews recent progress toward understanding of the local structure of solutions of degenerate and singular parabolic partial differential equations.

Shock Waves and Reaction—Diffusion Equations

Download Shock Waves and Reaction—Diffusion Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461208734
Total Pages : 650 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Shock Waves and Reaction—Diffusion Equations by : Joel Smoller

Download or read book Shock Waves and Reaction—Diffusion Equations written by Joel Smoller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: For this edition, a number of typographical errors and minor slip-ups have been corrected. In addition, following the persistent encouragement of Olga Oleinik, I have added a new chapter, Chapter 25, which I titled "Recent Results." This chapter is divided into four sections, and in these I have discussed what I consider to be some of the important developments which have come about since the writing of the first edition. Section I deals with reaction-diffusion equations, and in it are described both the work of C. Jones, on the stability of the travelling wave for the Fitz-Hugh-Nagumo equations, and symmetry-breaking bifurcations. Section II deals with some recent results in shock-wave theory. The main topics considered are L. Tartar's notion of compensated compactness, together with its application to pairs of conservation laws, and T.-P. Liu's work on the stability of viscous profiles for shock waves. In the next section, Conley's connection index and connection matrix are described; these general notions are useful in con structing travelling waves for systems of nonlinear equations. The final sec tion, Section IV, is devoted to the very recent results of C. Jones and R. Gardner, whereby they construct a general theory enabling them to locate the point spectrum of a wide class of linear operators which arise in stability problems for travelling waves. Their theory is general enough to be applica ble to many interesting reaction-diffusion systems.

Nonlinear Analysis and Semilinear Elliptic Problems

Download Nonlinear Analysis and Semilinear Elliptic Problems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521863209
Total Pages : 334 pages
Book Rating : 4.8/5 (632 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Analysis and Semilinear Elliptic Problems by : Antonio Ambrosetti

Download or read book Nonlinear Analysis and Semilinear Elliptic Problems written by Antonio Ambrosetti and published by Cambridge University Press. This book was released on 2007-01-04 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate text explaining how methods of nonlinear analysis can be used to tackle nonlinear differential equations. Suitable for mathematicians, physicists and engineers, topics covered range from elementary tools of bifurcation theory and analysis to critical point theory and elliptic partial differential equations. The book is amply illustrated with many exercises.

Lectures on Selected Topics in Mathematical Physics

Download Lectures on Selected Topics in Mathematical Physics PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1681742306
Total Pages : 67 pages
Book Rating : 4.6/5 (817 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Selected Topics in Mathematical Physics by : William A. Schwalm

Download or read book Lectures on Selected Topics in Mathematical Physics written by William A. Schwalm and published by Morgan & Claypool Publishers. This book was released on 2015-12-31 with total page 67 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first and second year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.

Weighted Sobolev Spaces and Degenerate Elliptic Equations

Download Weighted Sobolev Spaces and Degenerate Elliptic Equations PDF Online Free

Author :
Publisher : Cambridge Scholars Publishing
ISBN 13 : 1527551679
Total Pages : 333 pages
Book Rating : 4.5/5 (275 download)

DOWNLOAD NOW!


Book Synopsis Weighted Sobolev Spaces and Degenerate Elliptic Equations by : Albo Carlos Cavalheiro

Download or read book Weighted Sobolev Spaces and Degenerate Elliptic Equations written by Albo Carlos Cavalheiro and published by Cambridge Scholars Publishing. This book was released on 2023-09-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: In various applications, we can meet boundary value problems for elliptic equations whose ellipticity is disturbed in the sense that some degeneration or singularity appears. This bad behavior can be caused by the coefficients of the corresponding differential operator as well as by the solution itself. There are several very concrete problems in various practices which lead to such differential equations, such as glaciology, non-Newtonian fluid mechanics, flows through porous media, differential geometry, celestial mechanics, climatology, and reaction-diffusion problems, among others. This book is based on research by the author on degenerate elliptic equations. This book will be a useful reference source for graduate students and researchers interested in differential equations.

Elliptic Partial Differential Equations

Download Elliptic Partial Differential Equations PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110315424
Total Pages : 204 pages
Book Rating : 4.1/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Elliptic Partial Differential Equations by : Lucio Boccardo

Download or read book Elliptic Partial Differential Equations written by Lucio Boccardo and published by Walter de Gruyter. This book was released on 2013-10-29 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elliptic partial differential equations is one of the main and most active areas in mathematics. This book is devoted to the study of linear and nonlinear elliptic problems in divergence form, with the aim of providing classical results, as well as more recent developments about distributional solutions. For this reason this monograph is addressed to master's students, PhD students and anyone who wants to begin research in this mathematical field.

Elliptic & Parabolic Equations

Download Elliptic & Parabolic Equations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812700250
Total Pages : 428 pages
Book Rating : 4.8/5 (127 download)

DOWNLOAD NOW!


Book Synopsis Elliptic & Parabolic Equations by : Zhuoqun Wu

Download or read book Elliptic & Parabolic Equations written by Zhuoqun Wu and published by World Scientific. This book was released on 2006 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to elliptic and parabolic equations. While there are numerous monographs focusing separately on each kind of equations, there are very few books treating these two kinds of equations in combination. This book presents the related basic theories and methods to enable readers to appreciate the commonalities between these two kinds of equations as well as contrast the similarities and differences between them.