Nonparametric Regression and Generalized Linear Models

Download Nonparametric Regression and Generalized Linear Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482229757
Total Pages : 197 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Regression and Generalized Linear Models by : P.J. Green

Download or read book Nonparametric Regression and Generalized Linear Models written by P.J. Green and published by CRC Press. This book was released on 1993-05-01 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonparametric Regression and Generalized Linear Models focuses on the roughness penalty method of nonparametric smoothing and shows how this technique provides a unifying approach to a wide range of smoothing problems. The emphasis is methodological rather than theoretical, and the authors concentrate on statistical and computation issues. Real data examples are used to illustrate the various methods and to compare them with standard parametric approaches. The mathematical treatment is self-contained and depends mainly on simple linear algebra and calculus. This monograph will be useful both as a reference work for research and applied statisticians and as a text for graduate students.

Introduction to Nonparametric Regression

Download Introduction to Nonparametric Regression PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471771449
Total Pages : 566 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Nonparametric Regression by : K. Takezawa

Download or read book Introduction to Nonparametric Regression written by K. Takezawa and published by John Wiley & Sons. This book was released on 2005-12-02 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: An easy-to-grasp introduction to nonparametric regression This book's straightforward, step-by-step approach provides an excellent introduction to the field for novices of nonparametric regression. Introduction to Nonparametric Regression clearly explains the basic concepts underlying nonparametric regression and features: * Thorough explanations of various techniques, which avoid complex mathematics and excessive abstract theory to help readers intuitively grasp the value of nonparametric regression methods * Statistical techniques accompanied by clear numerical examples that further assist readers in developing and implementing their own solutions * Mathematical equations that are accompanied by a clear explanation of how the equation was derived The first chapter leads with a compelling argument for studying nonparametric regression and sets the stage for more advanced discussions. In addition to covering standard topics, such as kernel and spline methods, the book provides in-depth coverage of the smoothing of histograms, a topic generally not covered in comparable texts. With a learning-by-doing approach, each topical chapter includes thorough S-Plus? examples that allow readers to duplicate the same results described in the chapter. A separate appendix is devoted to the conversion of S-Plus objects to R objects. In addition, each chapter ends with a set of problems that test readers' grasp of key concepts and techniques and also prepares them for more advanced topics. This book is recommended as a textbook for undergraduate and graduate courses in nonparametric regression. Only a basic knowledge of linear algebra and statistics is required. In addition, this is an excellent resource for researchers and engineers in such fields as pattern recognition, speech understanding, and data mining. Practitioners who rely on nonparametric regression for analyzing data in the physical, biological, and social sciences, as well as in finance and economics, will find this an unparalleled resource.

Nonparametric and Semiparametric Models

Download Nonparametric and Semiparametric Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 364217146X
Total Pages : 317 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric and Semiparametric Models by : Wolfgang Karl Härdle

Download or read book Nonparametric and Semiparametric Models written by Wolfgang Karl Härdle and published by Springer Science & Business Media. This book was released on 2012-08-27 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.

Nonparametric Regression and Generalized Linear Models

Download Nonparametric Regression and Generalized Linear Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780412300400
Total Pages : 198 pages
Book Rating : 4.3/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Regression and Generalized Linear Models by : P.J. Green

Download or read book Nonparametric Regression and Generalized Linear Models written by P.J. Green and published by CRC Press. This book was released on 1993-05-01 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, there has been a great deal of interest and activity in the general area of nonparametric smoothing in statistics. This monograph concentrates on the roughness penalty method and shows how this technique provides a unifying approach to a wide range of smoothing problems. The method allows parametric assumptions to be realized in regression problems, in those approached by generalized linear modelling, and in many other contexts. The emphasis throughout is methodological rather than theoretical, and it concentrates on statistical and computation issues. Real data examples are used to illustrate the various methods and to compare them with standard parametric approaches. Some publicly available software is also discussed. The mathematical treatment is self-contained and depends mainly on simple linear algebra and calculus. This monograph will be useful both as a reference work for research and applied statisticians and as a text for graduate students and other encountering the material for the first time.

Statistical Regression and Classification

Download Statistical Regression and Classification PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351645897
Total Pages : 439 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Statistical Regression and Classification by : Norman Matloff

Download or read book Statistical Regression and Classification written by Norman Matloff and published by CRC Press. This book was released on 2017-09-19 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Regression and Classification: From Linear Models to Machine Learning takes an innovative look at the traditional statistical regression course, presenting a contemporary treatment in line with today's applications and users. The text takes a modern look at regression: * A thorough treatment of classical linear and generalized linear models, supplemented with introductory material on machine learning methods. * Since classification is the focus of many contemporary applications, the book covers this topic in detail, especially the multiclass case. * In view of the voluminous nature of many modern datasets, there is a chapter on Big Data. * Has special Mathematical and Computational Complements sections at ends of chapters, and exercises are partitioned into Data, Math and Complements problems. * Instructors can tailor coverage for specific audiences such as majors in Statistics, Computer Science, or Economics. * More than 75 examples using real data. The book treats classical regression methods in an innovative, contemporary manner. Though some statistical learning methods are introduced, the primary methodology used is linear and generalized linear parametric models, covering both the Description and Prediction goals of regression methods. The author is just as interested in Description applications of regression, such as measuring the gender wage gap in Silicon Valley, as in forecasting tomorrow's demand for bike rentals. An entire chapter is devoted to measuring such effects, including discussion of Simpson's Paradox, multiple inference, and causation issues. Similarly, there is an entire chapter of parametric model fit, making use of both residual analysis and assessment via nonparametric analysis. Norman Matloff is a professor of computer science at the University of California, Davis, and was a founder of the Statistics Department at that institution. His current research focus is on recommender systems, and applications of regression methods to small area estimation and bias reduction in observational studies. He is on the editorial boards of the Journal of Statistical Computation and the R Journal. An award-winning teacher, he is the author of The Art of R Programming and Parallel Computation in Data Science: With Examples in R, C++ and CUDA.

Generalized Additive Models

Download Generalized Additive Models PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1351445979
Total Pages : 352 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Generalized Additive Models by : T.J. Hastie

Download or read book Generalized Additive Models written by T.J. Hastie and published by Routledge. This book was released on 2017-10-19 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes an array of power tools for data analysis that are based on nonparametric regression and smoothing techniques. These methods relax the linear assumption of many standard models and allow analysts to uncover structure in the data that might otherwise have been missed. While McCullagh and Nelder's Generalized Linear Models shows how to extend the usual linear methodology to cover analysis of a range of data types, Generalized Additive Models enhances this methodology even further by incorporating the flexibility of nonparametric regression. Clear prose, exercises in each chapter, and case studies enhance this popular text.

Nonparametric Regression as a General Statistical Modeling Methodology

Download Nonparametric Regression as a General Statistical Modeling Methodology PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 638 pages
Book Rating : 4.:/5 (319 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Regression as a General Statistical Modeling Methodology by : Jeffrey Thomas McLeod

Download or read book Nonparametric Regression as a General Statistical Modeling Methodology written by Jeffrey Thomas McLeod and published by . This book was released on 1998 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Nonparametric Regression Methods for Longitudinal Data Analysis

Download Nonparametric Regression Methods for Longitudinal Data Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470009667
Total Pages : 401 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Regression Methods for Longitudinal Data Analysis by : Hulin Wu

Download or read book Nonparametric Regression Methods for Longitudinal Data Analysis written by Hulin Wu and published by John Wiley & Sons. This book was released on 2006-05-12 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporates mixed-effects modeling techniques for more powerful and efficient methods This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented. With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques. The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis. Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices. With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.

Nonparametric Simple Regression

Download Nonparametric Simple Regression PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 9780761915850
Total Pages : 100 pages
Book Rating : 4.9/5 (158 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Simple Regression by : John Fox

Download or read book Nonparametric Simple Regression written by John Fox and published by SAGE. This book was released on 2000-01-20 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonparametric simple regression forms the basis for nonparametric multiple regression and directly supplies the building blocks for the type of nonparametric multiple regression called additive regression.

Multiple and Generalized Nonparametric Regression

Download Multiple and Generalized Nonparametric Regression PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 9780761921899
Total Pages : 100 pages
Book Rating : 4.9/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Multiple and Generalized Nonparametric Regression by : John Fox

Download or read book Multiple and Generalized Nonparametric Regression written by John Fox and published by SAGE. This book was released on 2000-05 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume introduces this useful technique which makes minimal assumptions about the form of relationship between the average response and the predictors.

The Oxford Handbook of Panel Data

Download The Oxford Handbook of Panel Data PDF Online Free

Author :
Publisher :
ISBN 13 : 0199940045
Total Pages : 705 pages
Book Rating : 4.1/5 (999 download)

DOWNLOAD NOW!


Book Synopsis The Oxford Handbook of Panel Data by : Badi Hani Baltagi

Download or read book The Oxford Handbook of Panel Data written by Badi Hani Baltagi and published by . This book was released on 2015 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Oxford Handbook of Panel Data examines new developments in the theory and applications of panel data. It includes basic topics like non-stationary panels, co-integration in panels, multifactor panel models, panel unit roots, measurement error in panels, incidental parameters and dynamic panels, spatial panels, nonparametric panel data, random coefficients, treatment effects, sample selection, count panel data, limited dependent variable panel models, unbalanced panel models with interactive effects and influential observations in panel data. Contributors to the Handbook explore applications of panel data to a wide range of topics in economics, including health, labor, marketing, trade, productivity, and macro applications in panels. This Handbook is an informative and comprehensive guide for both those who are relatively new to the field and for those wishing to extend their knowledge to the frontier. It is a trusted and definitive source on panel data, having been edited by Professor Badi Baltagi-widely recognized as one of the foremost econometricians in the area of panel data econometrics. Professor Baltagi has successfully recruited an all-star cast of experts for each of the well-chosen topics in the Handbook.

Applied Linear Statistical Models

Download Applied Linear Statistical Models PDF Online Free

Author :
Publisher : McGraw-Hill/Irwin
ISBN 13 : 9780072386882
Total Pages : 1396 pages
Book Rating : 4.3/5 (868 download)

DOWNLOAD NOW!


Book Synopsis Applied Linear Statistical Models by : Michael H. Kutner

Download or read book Applied Linear Statistical Models written by Michael H. Kutner and published by McGraw-Hill/Irwin. This book was released on 2005 with total page 1396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.

Statistical Models and Methods for Financial Markets

Download Statistical Models and Methods for Financial Markets PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387778276
Total Pages : 363 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Statistical Models and Methods for Financial Markets by : Tze Leung Lai

Download or read book Statistical Models and Methods for Financial Markets written by Tze Leung Lai and published by Springer Science & Business Media. This book was released on 2008-09-08 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.

Nonparametric Statistics with Applications to Science and Engineering

Download Nonparametric Statistics with Applications to Science and Engineering PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780470168691
Total Pages : 448 pages
Book Rating : 4.1/5 (686 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Statistics with Applications to Science and Engineering by : Paul H. Kvam

Download or read book Nonparametric Statistics with Applications to Science and Engineering written by Paul H. Kvam and published by John Wiley & Sons. This book was released on 2007-08-24 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods.

Nonparametric Statistical Methods Using R

Download Nonparametric Statistical Methods Using R PDF Online Free

Author :
Publisher : Scientific e-Resources
ISBN 13 : 1839473258
Total Pages : 334 pages
Book Rating : 4.8/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Nonparametric Statistical Methods Using R by : Graysen Cline

Download or read book Nonparametric Statistical Methods Using R written by Graysen Cline and published by Scientific e-Resources. This book was released on 2019-05-19 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonparametric Statistical Methods Using R covers customary nonparametric methods and rank-based examinations, including estimation and deduction for models running from straightforward area models to general direct and nonlinear models for uncorrelated and corresponded reactions. The creators underscore applications and measurable calculation. They represent the methods with numerous genuine and mimicked information cases utilizing R, including the bundles Rfit and npsm. The book initially gives a diagram of the R dialect and essential factual ideas previously examining nonparametrics. It presents rank-based methods for one-and two-example issues, strategies for relapse models, calculation for general settled impacts ANOVA and ANCOVA models, and time-to-occasion examinations. The last two parts cover further developed material, including high breakdown fits for general relapse models and rank-based surmising for bunch associated information. The book can be utilized as an essential content or supplement in a course on connected nonparametric or hearty strategies and as a source of perspective for scientists who need to execute nonparametric and rank-based methods by and by. Through various illustrations, it demonstrates to perusers proper methodologies to apply these methods utilizing R.

Bayesian and Frequentist Regression Methods

Download Bayesian and Frequentist Regression Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441909257
Total Pages : 700 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Bayesian and Frequentist Regression Methods by : Jon Wakefield

Download or read book Bayesian and Frequentist Regression Methods written by Jon Wakefield and published by Springer Science & Business Media. This book was released on 2013-01-04 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis. Many texts cover one or the other of the approaches, but this is the most comprehensive combination of Bayesian and frequentist methods that exists in one place. The two philosophical approaches to regression methodology are featured here as complementary techniques, with theory and data analysis providing supplementary components of the discussion. In particular, methods are illustrated using a variety of data sets. The majority of the data sets are drawn from biostatistics but the techniques are generalizable to a wide range of other disciplines.

Methods And Models In Statistics: In Honour Of Professor John Nelder, Frs

Download Methods And Models In Statistics: In Honour Of Professor John Nelder, Frs PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 1783260696
Total Pages : 261 pages
Book Rating : 4.7/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Methods And Models In Statistics: In Honour Of Professor John Nelder, Frs by : David J Hand

Download or read book Methods And Models In Statistics: In Honour Of Professor John Nelder, Frs written by David J Hand and published by World Scientific. This book was released on 2004-07-06 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: John Nelder was one of the most influential statisticians of his generation, having made an impact on many parts of the discipline. This book contains reviews of some of those areas, written by top researchers. It is accessible to non-specialists, and is noteworthy for its breadth of coverage.