Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Nonparametric Methods For Multivariate Data And Regression Analysis
Download Nonparametric Methods For Multivariate Data And Regression Analysis full books in PDF, epub, and Kindle. Read online Nonparametric Methods For Multivariate Data And Regression Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Multivariate Nonparametric Regression and Visualization by : Jussi Sakari Klemelä
Download or read book Multivariate Nonparametric Regression and Visualization written by Jussi Sakari Klemelä and published by John Wiley & Sons. This book was released on 2014-05-05 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern approach to statistical learning and its applications through visualization methods With a unique and innovative presentation, Multivariate Nonparametric Regression and Visualization provides readers with the core statistical concepts to obtain complete and accurate predictions when given a set of data. Focusing on nonparametric methods to adapt to the multiple types of data generating mechanisms, the book begins with an overview of classification and regression. The book then introduces and examines various tested and proven visualization techniques for learning samples and functions. Multivariate Nonparametric Regression and Visualization identifies risk management, portfolio selection, and option pricing as the main areas in which statistical methods may be implemented in quantitative finance. The book provides coverage of key statistical areas including linear methods, kernel methods, additive models and trees, boosting, support vector machines, and nearest neighbor methods. Exploring the additional applications of nonparametric and semiparametric methods, Multivariate Nonparametric Regression and Visualization features: An extensive appendix with R-package training material to encourage duplication and modification of the presented computations and research Multiple examples to demonstrate the applications in the field of finance Sections with formal definitions of the various applied methods for readers to utilize throughout the book Multivariate Nonparametric Regression and Visualization is an ideal textbook for upper-undergraduate and graduate-level courses on nonparametric function estimation, advanced topics in statistics, and quantitative finance. The book is also an excellent reference for practitioners who apply statistical methods in quantitative finance.
Book Synopsis Multivariate Nonparametric Methods with R by : Hannu Oja
Download or read book Multivariate Nonparametric Methods with R written by Hannu Oja and published by Springer Science & Business Media. This book was released on 2010-03-25 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a new, fairly efficient, and robust alternative to analyzing multivariate data. The analysis of data based on multivariate spatial signs and ranks proceeds very much as does a traditional multivariate analysis relying on the assumption of multivariate normality; the regular L2 norm is just replaced by different L1 norms, observation vectors are replaced by spatial signs and ranks, and so on. A unified methodology starting with the simple one-sample multivariate location problem and proceeding to the general multivariate multiple linear regression case is presented. Companion estimates and tests for scatter matrices are considered as well. The R package MNM is available for computation of the procedures. This monograph provides an up-to-date overview of the theory of multivariate nonparametric methods based on spatial signs and ranks. The classical book by Puri and Sen (1971) uses marginal signs and ranks and different type of L1 norm. The book may serve as a textbook and a general reference for the latest developments in the area. Readers are assumed to have a good knowledge of basic statistical theory as well as matrix theory. Hannu Oja is an academy professor and a professor in biometry in the University of Tampere. He has authored and coauthored numerous research articles in multivariate nonparametrical and robust methods as well as in biostatistics.
Book Synopsis Introduction to Nonparametric Regression by : K. Takezawa
Download or read book Introduction to Nonparametric Regression written by K. Takezawa and published by John Wiley & Sons. This book was released on 2005-12-02 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: An easy-to-grasp introduction to nonparametric regression This book's straightforward, step-by-step approach provides an excellent introduction to the field for novices of nonparametric regression. Introduction to Nonparametric Regression clearly explains the basic concepts underlying nonparametric regression and features: * Thorough explanations of various techniques, which avoid complex mathematics and excessive abstract theory to help readers intuitively grasp the value of nonparametric regression methods * Statistical techniques accompanied by clear numerical examples that further assist readers in developing and implementing their own solutions * Mathematical equations that are accompanied by a clear explanation of how the equation was derived The first chapter leads with a compelling argument for studying nonparametric regression and sets the stage for more advanced discussions. In addition to covering standard topics, such as kernel and spline methods, the book provides in-depth coverage of the smoothing of histograms, a topic generally not covered in comparable texts. With a learning-by-doing approach, each topical chapter includes thorough S-Plus? examples that allow readers to duplicate the same results described in the chapter. A separate appendix is devoted to the conversion of S-Plus objects to R objects. In addition, each chapter ends with a set of problems that test readers' grasp of key concepts and techniques and also prepares them for more advanced topics. This book is recommended as a textbook for undergraduate and graduate courses in nonparametric regression. Only a basic knowledge of linear algebra and statistics is required. In addition, this is an excellent resource for researchers and engineers in such fields as pattern recognition, speech understanding, and data mining. Practitioners who rely on nonparametric regression for analyzing data in the physical, biological, and social sciences, as well as in finance and economics, will find this an unparalleled resource.
Book Synopsis Selecting Models from Data by : P. Cheeseman
Download or read book Selecting Models from Data written by P. Cheeseman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a selection of papers presented at the Fourth International Workshop on Artificial Intelligence and Statistics held in January 1993. These biennial workshops have succeeded in bringing together researchers from Artificial Intelligence and from Statistics to discuss problems of mutual interest. The exchange has broadened research in both fields and has strongly encour aged interdisciplinary work. The theme ofthe 1993 AI and Statistics workshop was: "Selecting Models from Data". The papers in this volume attest to the diversity of approaches to model selection and to the ubiquity of the problem. Both statistics and artificial intelligence have independently developed approaches to model selection and the corresponding algorithms to implement them. But as these papers make clear, there is a high degree of overlap between the different approaches. In particular, there is agreement that the fundamental problem is the avoidence of "overfitting"-Le., where a model fits the given data very closely, but is a poor predictor for new data; in other words, the model has partly fitted the "noise" in the original data.
Book Synopsis Applied Nonparametric Regression by : Wolfgang Härdle
Download or read book Applied Nonparametric Regression written by Wolfgang Härdle and published by Cambridge University Press. This book was released on 1990 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to bring together in one place the techniques for regression curve smoothing involving more than one variable.
Book Synopsis Nonparametric Regression Methods for Longitudinal Data Analysis by : Hulin Wu
Download or read book Nonparametric Regression Methods for Longitudinal Data Analysis written by Hulin Wu and published by John Wiley & Sons. This book was released on 2006-05-12 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporates mixed-effects modeling techniques for more powerful and efficient methods This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented. With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques. The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis. Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices. With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.
Book Synopsis Nonparametric Regression Analysis of Longitudinal Data by : Hans-Georg Müller
Download or read book Nonparametric Regression Analysis of Longitudinal Data written by Hans-Georg Müller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph reviews some of the work that has been done for longitudi nal data in the rapidly expanding field of nonparametric regression. The aim is to give the reader an impression of the basic mathematical tools that have been applied, and also to provide intuition about the methods and applications. Applications to the analysis of longitudinal studies are emphasized to encourage the non-specialist and applied statistician to try these methods out. To facilitate this, FORTRAN programs are provided which carry out some of the procedures described in the text. The emphasis of most research work so far has been on the theoretical aspects of nonparametric regression. It is my hope that these techniques will gain a firm place in the repertoire of applied statisticians who realize the large potential for convincing applications and the need to use these techniques concurrently with parametric regression. This text evolved during a set of lectures given by the author at the Division of Statistics at the University of California, Davis in Fall 1986 and is based on the author's Habilitationsschrift submitted to the University of Marburg in Spring 1985 as well as on published and unpublished work. Completeness is not attempted, neither in the text nor in the references. The following persons have been particularly generous in sharing research or giving advice: Th. Gasser, P. Ihm, Y. P. Mack, V. Mammi tzsch, G . G. Roussas, U. Stadtmuller, W. Stute and R.
Book Synopsis Modern Multivariate Statistical Techniques by : Alan J. Izenman
Download or read book Modern Multivariate Statistical Techniques written by Alan J. Izenman and published by Springer Science & Business Media. This book was released on 2009-03-02 with total page 757 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.
Book Synopsis Modern Nonparametric, Robust and Multivariate Methods by : Klaus Nordhausen
Download or read book Modern Nonparametric, Robust and Multivariate Methods written by Klaus Nordhausen and published by Springer. This book was released on 2015-10-05 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by leading experts in the field, this edited volume brings together the latest findings in the area of nonparametric, robust and multivariate statistical methods. The individual contributions cover a wide variety of topics ranging from univariate nonparametric methods to robust methods for complex data structures. Some examples from statistical signal processing are also given. The volume is dedicated to Hannu Oja on the occasion of his 65th birthday and is intended for researchers as well as PhD students with a good knowledge of statistics.
Book Synopsis Nonparametric Methods by : P. R. Krishnaiah
Download or read book Nonparametric Methods written by P. R. Krishnaiah and published by Elsevier Health Sciences. This book was released on 1984 with total page 1016 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classical developments. Linear models. Order statistics and empitical distribution. Estimation procedures. Stochastic aproximation and density estimation. Life testing and reliability. Miscellaneous topics. Applications. Tables.
Book Synopsis Nonparametric and Semiparametric Models by : Wolfgang Karl Härdle
Download or read book Nonparametric and Semiparametric Models written by Wolfgang Karl Härdle and published by Springer Science & Business Media. This book was released on 2012-08-27 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.
Book Synopsis Nonparametric Econometrics by : Qi Li
Download or read book Nonparametric Econometrics written by Qi Li and published by Princeton University Press. This book was released on 2011-10-09 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.
Book Synopsis SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics by : Daniel J. Denis
Download or read book SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics written by Daniel J. Denis and published by John Wiley & Sons. This book was released on 2018-09-25 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enables readers to start doing actual data analysis fast for a truly hands-on learning experience This concise and very easy-to-use primer introduces readers to a host of computational tools useful for making sense out of data, whether that data come from the social, behavioral, or natural sciences. The book places great emphasis on both data analysis and drawing conclusions from empirical observations. It also provides formulas where needed in many places, while always remaining focused on concepts rather than mathematical abstraction. SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics offers a variety of popular statistical analyses and data management tasks using SPSS that readers can immediately apply as needed for their own research, and emphasizes many helpful computational tools used in the discovery of empirical patterns. The book begins with a review of essential statistical principles before introducing readers to SPSS. The book then goes on to offer chapters on: Exploratory Data Analysis, Basic Statistics, and Visual Displays; Data Management in SPSS; Inferential Tests on Correlations, Counts, and Means; Power Analysis and Estimating Sample Size; Analysis of Variance – Fixed and Random Effects; Repeated Measures ANOVA; Simple and Multiple Linear Regression; Logistic Regression; Multivariate Analysis of Variance (MANOVA) and Discriminant Analysis; Principal Components Analysis; Exploratory Factor Analysis; and Non-Parametric Tests. This helpful resource allows readers to: Understand data analysis in practice rather than delving too deeply into abstract mathematical concepts Make use of computational tools used by data analysis professionals. Focus on real-world application to apply concepts from the book to actual research Assuming only minimal, prior knowledge of statistics, SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics is an excellent “how-to” book for undergraduate and graduate students alike. This book is also a welcome resource for researchers and professionals who require a quick, go-to source for performing essential statistical analyses and data management tasks.
Book Synopsis Making Sense of Multivariate Data Analysis by : John Spicer
Download or read book Making Sense of Multivariate Data Analysis written by John Spicer and published by SAGE. This book was released on 2005 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: A short introduction to the subject, this text is aimed at students & practitioners in the behavioural & social sciences. It offers a conceptual overview of the foundations of MDA & of a range of specific techniques including multiple regression, logistic regression & log-linear analysis.
Book Synopsis Multivariate Analysis of Ecological Data by : Michael Greenacre
Download or read book Multivariate Analysis of Ecological Data written by Michael Greenacre and published by Fundacion BBVA. This book was released on 2014-01-09 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: La diversidad biológica es fruto de la interacción entre numerosas especies, ya sean marinas, vegetales o animales, a la par que de los muchos factores limitantes que caracterizan el medio que habitan. El análisis multivariante utiliza las relaciones entre diferentes variables para ordenar los objetos de estudio según sus propiedades colectivas y luego clasificarlos; es decir, agrupar especies o ecosistemas en distintas clases compuestas cada una por entidades con propiedades parecidas. El fin último es relacionar la variabilidad biológica observada con las correspondientes características medioambientales. Multivariate Analysis of Ecological Data explica de manera completa y estructurada cómo analizar e interpretar los datos ecológicos observados sobre múltiples variables, tanto biológicos como medioambientales. Tras una introducción general a los datos ecológicos multivariantes y la metodología estadística, se abordan en capítulos específicos, métodos como aglomeración (clustering), regresión, biplots, escalado multidimensional, análisis de correspondencias (simple y canónico) y análisis log-ratio, con atención también a sus problemas de modelado y aspectos inferenciales. El libro plantea una serie de aplicaciones a datos reales derivados de investigaciones ecológicas, además de dos casos detallados que llevan al lector a apreciar los retos de análisis, interpretación y comunicación inherentes a los estudios a gran escala y los diseños complejos.
Book Synopsis A Distribution-Free Theory of Nonparametric Regression by : László Györfi
Download or read book A Distribution-Free Theory of Nonparametric Regression written by László Györfi and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic in-depth analysis of nonparametric regression with random design. It covers almost all known estimates. The emphasis is on distribution-free properties of the estimates.
Book Synopsis Advanced Linear Modeling by : Ronald Christensen
Download or read book Advanced Linear Modeling written by Ronald Christensen and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces several topics related to linear model theory, including: multivariate linear models, discriminant analysis, principal components, factor analysis, time series in both the frequency and time domains, and spatial data analysis. This second edition adds new material on nonparametric regression, response surface maximization, and longitudinal models. The book provides a unified approach to these disparate subjects and serves as a self-contained companion volume to the author's Plane Answers to Complex Questions: The Theory of Linear Models. Ronald Christensen is Professor of Statistics at the University of New Mexico. He is well known for his work on the theory and application of linear models having linear structure.