Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Nonparametric Functional Estimation
Download Nonparametric Functional Estimation full books in PDF, epub, and Kindle. Read online Nonparametric Functional Estimation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Nonparametric Functional Estimation by : B. L. S. Prakasa Rao
Download or read book Nonparametric Functional Estimation written by B. L. S. Prakasa Rao and published by . This book was released on 1983-01-01 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Nonparametric Functional Estimation and Related Topics by : George Roussas
Download or read book Nonparametric Functional Estimation and Related Topics written by George Roussas and published by Springer Science & Business Media. This book was released on 1991-04-30 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: About three years ago, an idea was discussed among some colleagues in the Division of Statistics at the University of California, Davis, as to the possibility of holding an international conference, focusing exclusively on nonparametric curve estimation. The fruition of this idea came about with the enthusiastic support of this project by Luc Devroye of McGill University, Canada, and Peter Robinson of the London School of Economics, UK. The response of colleagues, contacted to ascertain interest in participation in such a conference, was gratifying and made the effort involved worthwhile. Devroye and Robinson, together with this editor and George Metakides of the University of Patras, Greece and of the European Economic Communities, Brussels, formed the International Organizing Committee for a two week long Advanced Study Institute (ASI) sponsored by the Scientific Affairs Division of the North Atlantic Treaty Organization (NATO). The ASI was held on the Greek Island of Spetses between July 29 and August 10, 1990. Nonparametric functional estimation is a central topic in statistics, with applications in numerous substantive fields in mathematics, natural and social sciences, engineering and medicine. While there has been interest in nonparametric functional estimation for many years, this has grown of late, owing to increasing availability of large data sets and the ability to process them by means of improved computing facilities, along with the ability to display the results by means of sophisticated graphical procedures.
Book Synopsis Nonparametric Function Estimation, Modeling, and Simulation by : James R. Thompson
Download or read book Nonparametric Function Estimation, Modeling, and Simulation written by James R. Thompson and published by SIAM. This book was released on 1990-01-01 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics emphasized include nonparametric density estimation as an exploratory device plus the deeper models to which the exploratory analysis points, multi-dimensional data analysis, and analysis of remote sensing data, cancer progression, chaos theory, epidemiological modeling, and parallel based algorithms. New methods discussed are quick nonparametric density estimation based techniques for resampling and simulation based estimation techniques not requiring closed form solutions.
Book Synopsis Nonparametric Functional Estimation and Related Topics by : G.G Roussas
Download or read book Nonparametric Functional Estimation and Related Topics written by G.G Roussas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: About three years ago, an idea was discussed among some colleagues in the Division of Statistics at the University of California, Davis, as to the possibility of holding an international conference, focusing exclusively on nonparametric curve estimation. The fruition of this idea came about with the enthusiastic support of this project by Luc Devroye of McGill University, Canada, and Peter Robinson of the London School of Economics, UK. The response of colleagues, contacted to ascertain interest in participation in such a conference, was gratifying and made the effort involved worthwhile. Devroye and Robinson, together with this editor and George Metakides of the University of Patras, Greece and of the European Economic Communities, Brussels, formed the International Organizing Committee for a two week long Advanced Study Institute (ASI) sponsored by the Scientific Affairs Division of the North Atlantic Treaty Organization (NATO). The ASI was held on the Greek Island of Spetses between July 29 and August 10, 1990. Nonparametric functional estimation is a central topic in statistics, with applications in numerous substantive fields in mathematics, natural and social sciences, engineering and medicine. While there has been interest in nonparametric functional estimation for many years, this has grown of late, owing to increasing availability of large data sets and the ability to process them by means of improved computing facilities, along with the ability to display the results by means of sophisticated graphical procedures.
Author :Alexandre B. Tsybakov Publisher :Springer Science & Business Media ISBN 13 :0387790527 Total Pages :222 pages Book Rating :4.3/5 (877 download)
Book Synopsis Introduction to Nonparametric Estimation by : Alexandre B. Tsybakov
Download or read book Introduction to Nonparametric Estimation written by Alexandre B. Tsybakov and published by Springer Science & Business Media. This book was released on 2008-10-22 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field.
Book Synopsis Nonparametric Functional Estimation by : B. L. S. Prakasa Rao
Download or read book Nonparametric Functional Estimation written by B. L. S. Prakasa Rao and published by Academic Press. This book was released on 2014-07-10 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonparametric Functional Estimation is a compendium of papers, written by experts, in the area of nonparametric functional estimation. This book attempts to be exhaustive in nature and is written both for specialists in the area as well as for students of statistics taking courses at the postgraduate level. The main emphasis throughout the book is on the discussion of several methods of estimation and on the study of their large sample properties. Chapters are devoted to topics on estimation of density and related functions, the application of density estimation to classification problems, and the different facets of estimation of distribution functions. Statisticians and students of statistics and engineering will find the text very useful.
Book Synopsis Nonparametric Curve Estimation by : Sam Efromovich
Download or read book Nonparametric Curve Estimation written by Sam Efromovich and published by Springer Science & Business Media. This book was released on 2008-01-19 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a systematic, comprehensive, and unified account of modern nonparametric statistics of density estimation, nonparametric regression, filtering signals, and time series analysis. The companion software package, available over the Internet, brings all of the discussed topics into the realm of interactive research. Virtually every claim and development mentioned in the book is illustrated with graphs which are available for the reader to reproduce and modify, making the material fully transparent and allowing for complete interactivity.
Book Synopsis Nonparametric Kernel Density Estimation and Its Computational Aspects by : Artur Gramacki
Download or read book Nonparametric Kernel Density Estimation and Its Computational Aspects written by Artur Gramacki and published by Springer. This book was released on 2017-12-21 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes computational problems related to kernel density estimation (KDE) – one of the most important and widely used data smoothing techniques. A very detailed description of novel FFT-based algorithms for both KDE computations and bandwidth selection are presented. The theory of KDE appears to have matured and is now well developed and understood. However, there is not much progress observed in terms of performance improvements. This book is an attempt to remedy this. The book primarily addresses researchers and advanced graduate or postgraduate students who are interested in KDE and its computational aspects. The book contains both some background and much more sophisticated material, hence also more experienced researchers in the KDE area may find it interesting. The presented material is richly illustrated with many numerical examples using both artificial and real datasets. Also, a number of practical applications related to KDE are presented.
Book Synopsis Nonparametric Functional Data Analysis by : Frédéric Ferraty
Download or read book Nonparametric Functional Data Analysis written by Frédéric Ferraty and published by Springer Science & Business Media. This book was released on 2006-11-22 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied through parameter-free statistical ideas. At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.
Book Synopsis Nonparametric Econometrics by : Qi Li
Download or read book Nonparametric Econometrics written by Qi Li and published by Princeton University Press. This book was released on 2011-10-09 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.
Book Synopsis Information Bounds and Nonparametric Maximum Likelihood Estimation by : P. Groeneboom
Download or read book Information Bounds and Nonparametric Maximum Likelihood Estimation written by P. Groeneboom and published by Springer Science & Business Media. This book was released on 1992-07-31 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the lecture notes for a DMV course presented by the authors at Gunzburg, Germany, in September, 1990. In the course we sketched the theory of information bounds for non parametric and semiparametric models, and developed the theory of non parametric maximum likelihood estimation in several particular inverse problems: interval censoring and deconvolution models. Part I, based on Jon Wellner's lectures, gives a brief sketch of information lower bound theory: Hajek's convolution theorem and extensions, useful minimax bounds for parametric problems due to Ibragimov and Has'minskii, and a recent result characterizing differentiable functionals due to van der Vaart (1991). The differentiability theorem is illustrated with the examples of interval censoring and deconvolution (which are pursued from the estimation perspective in part II). The differentiability theorem gives a way of clearly distinguishing situations in which 1 2 the parameter of interest can be estimated at rate n / and situations in which this is not the case. However it says nothing about which rates to expect when the functional is not differentiable. Even the casual reader will notice that several models are introduced, but not pursued in any detail; many problems remain. Part II, based on Piet Groeneboom's lectures, focuses on non parametric maximum likelihood estimates (NPMLE's) for certain inverse problems. The first chapter deals with the interval censoring problem.
Book Synopsis Nonparametric Curve Estimation from Time Series by : Lazlo Györfi
Download or read book Nonparametric Curve Estimation from Time Series written by Lazlo Györfi and published by Springer. This book was released on 2013-12-21 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because of the sheer size and scope of the plastics industry, the title Developments in Plastics Technology now covers an incredibly wide range of subjects or topics. No single volume can survey the whole field in any depth and what follows is, therefore, a series of chapters on selected topics. The topics were selected by us, the editors, because of their immediate relevance to the plastics industry. When one considers the advancements of the plastics processing machinery (in terms of its speed of operation and conciseness of control), it was felt that several chapters should be included which related to the types of control systems used and the correct usage of hydraulics. The importance of using cellular, rubber-modified and engineering-type plastics has had a major impact on the plastics industry and therefore a chapter on each of these subjects has been included. The two remaining chapters are on the characterisation and behaviour of polymer structures, both subjects again being of current academic or industrial interest. Each of the contributions was written by a specialist in that field and to them all, we, the editors, extend our heartfelt thanks, as writing a contribution for a book such as this, while doing a full-time job, is no easy task.
Book Synopsis Applied Nonparametric Regression by : Wolfgang Härdle
Download or read book Applied Nonparametric Regression written by Wolfgang Härdle and published by Cambridge University Press. This book was released on 1990 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to bring together in one place the techniques for regression curve smoothing involving more than one variable.
Book Synopsis Nonparametric and Semiparametric Models by : Wolfgang Karl Härdle
Download or read book Nonparametric and Semiparametric Models written by Wolfgang Karl Härdle and published by Springer Science & Business Media. This book was released on 2012-08-27 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.
Book Synopsis Nonparametric Function Estimation, Modeling, and Simulation by : James R. Thompson
Download or read book Nonparametric Function Estimation, Modeling, and Simulation written by James R. Thompson and published by SIAM. This book was released on 1990-01-01 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics emphasized in this book include nonparametric density estimation, multi-dimensional data analysis, cancer progression, chaos theory, and parallel based algorithms.
Book Synopsis The Statistical Analysis of Doubly Truncated Data by : Jacobo de Uña-Álvarez
Download or read book The Statistical Analysis of Doubly Truncated Data written by Jacobo de Uña-Álvarez and published by John Wiley & Sons. This book was released on 2021-11-22 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough treatment of the statistical methods used to analyze doubly truncated data In The Statistical Analysis of Doubly Truncated Data, an expert team of statisticians delivers an up-to-date review of existing methods used to deal with randomly truncated data, with a focus on the challenging problem of random double truncation. The authors comprehensively introduce doubly truncated data before moving on to discussions of the latest developments in the field. The book offers readers examples with R code along with real data from astronomy, engineering, and the biomedical sciences to illustrate and highlight the methods described within. Linear regression models for doubly truncated responses are provided and the influence of the bandwidth in the performance of kernel-type estimators, as well as guidelines for the selection of the smoothing parameter, are explored. Fully nonparametric and semiparametric estimators are explored and illustrated with real data. R code for reproducing the data examples is also provided. The book also offers: A thorough introduction to the existing methods that deal with randomly truncated data Comprehensive explorations of linear regression models for doubly truncated responses Practical discussions of the influence of bandwidth in the performance of kernel-type estimators and guidelines for the selection of the smoothing parameter In-depth examinations of nonparametric and semiparametric estimators Perfect for statistical professionals with some background in mathematical statistics, biostatisticians, and mathematicians with an interest in survival analysis and epidemiology, The Statistical Analysis of Doubly Truncated Data is also an invaluable addition to the libraries of biomedical scientists and practitioners, as well as postgraduate students studying survival analysis.
Book Synopsis Multivariate Nonparametric Regression and Visualization by : Jussi Sakari Klemelä
Download or read book Multivariate Nonparametric Regression and Visualization written by Jussi Sakari Klemelä and published by John Wiley & Sons. This book was released on 2014-05-05 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern approach to statistical learning and its applications through visualization methods With a unique and innovative presentation, Multivariate Nonparametric Regression and Visualization provides readers with the core statistical concepts to obtain complete and accurate predictions when given a set of data. Focusing on nonparametric methods to adapt to the multiple types of data generating mechanisms, the book begins with an overview of classification and regression. The book then introduces and examines various tested and proven visualization techniques for learning samples and functions. Multivariate Nonparametric Regression and Visualization identifies risk management, portfolio selection, and option pricing as the main areas in which statistical methods may be implemented in quantitative finance. The book provides coverage of key statistical areas including linear methods, kernel methods, additive models and trees, boosting, support vector machines, and nearest neighbor methods. Exploring the additional applications of nonparametric and semiparametric methods, Multivariate Nonparametric Regression and Visualization features: An extensive appendix with R-package training material to encourage duplication and modification of the presented computations and research Multiple examples to demonstrate the applications in the field of finance Sections with formal definitions of the various applied methods for readers to utilize throughout the book Multivariate Nonparametric Regression and Visualization is an ideal textbook for upper-undergraduate and graduate-level courses on nonparametric function estimation, advanced topics in statistics, and quantitative finance. The book is also an excellent reference for practitioners who apply statistical methods in quantitative finance.