Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Nonlinear Optimization In Finite Dimensions
Download Nonlinear Optimization In Finite Dimensions full books in PDF, epub, and Kindle. Read online Nonlinear Optimization In Finite Dimensions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Nonlinear Optimization in Finite Dimensions by : Hubertus Th. Jongen
Download or read book Nonlinear Optimization in Finite Dimensions written by Hubertus Th. Jongen and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the heart of the topology of global optimization lies Morse Theory: The study of the behaviour of lower level sets of functions as the level varies. Roughly speaking, the topology of lower level sets only may change when passing a level which corresponds to a stationary point (or Karush-Kuhn Tucker point). We study elements of Morse Theory, both in the unconstrained and constrained case. Special attention is paid to the degree of differentiabil ity of the functions under consideration. The reader will become motivated to discuss the possible shapes and forms of functions that may possibly arise within a given problem framework. In a separate chapter we show how certain ideas may be carried over to nonsmooth items, such as problems of Chebyshev approximation type. We made this choice in order to show that a good under standing of regular smooth problems may lead to a straightforward treatment of "just" continuous problems by means of suitable perturbation techniques, taking a priori nonsmoothness into account. Moreover, we make a focal point analysis in order to emphasize the difference between inner product norms and, for example, the maximum norm. Then, specific tools from algebraic topol ogy, in particular homology theory, are treated in some detail. However, this development is carried out only as far as it is needed to understand the relation between critical points of a function on a manifold with structured boundary. Then, we pay attention to three important subjects in nonlinear optimization.
Book Synopsis Convexity and Optimization in Finite Dimensions I by : Josef Stoer
Download or read book Convexity and Optimization in Finite Dimensions I written by Josef Stoer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dantzig's development of linear programming into one of the most applicable optimization techniques has spread interest in the algebra of linear inequalities, the geometry of polyhedra, the topology of convex sets, and the analysis of convex functions. It is the goal of this volume to provide a synopsis of these topics, and thereby the theoretical back ground for the arithmetic of convex optimization to be treated in a sub sequent volume. The exposition of each chapter is essentially independent, and attempts to reflect a specific style of mathematical reasoning. The emphasis lies on linear and convex duality theory, as initiated by Gale, Kuhn and Tucker, Fenchel, and v. Neumann, because it represents the theoretical development whose impact on modern optimi zation techniques has been the most pronounced. Chapters 5 and 6 are devoted to two characteristic aspects of duality theory: conjugate functions or polarity on the one hand, and saddle points on the other. The Farkas lemma on linear inequalities and its generalizations, Motzkin's description of polyhedra, Minkowski's supporting plane theorem are indispensable elementary tools which are contained in chapters 1, 2 and 3, respectively. The treatment of extremal properties of polyhedra as well as of general convex sets is based on the far reaching work of Klee. Chapter 2 terminates with a description of Gale diagrams, a recently developed successful technique for exploring polyhedral structures.
Book Synopsis Foundations of Optimization by : Osman Güler
Download or read book Foundations of Optimization written by Osman Güler and published by Springer Science & Business Media. This book was released on 2010-08-03 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamental principles of optimization in finite dimensions. It develops the necessary material in multivariable calculus both with coordinates and coordinate-free, so recent developments such as semidefinite programming can be dealt with.
Book Synopsis Convex Analysis and Nonlinear Optimization by : Jonathan Borwein
Download or read book Convex Analysis and Nonlinear Optimization written by Jonathan Borwein and published by Springer Science & Business Media. This book was released on 2010-05-05 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.
Book Synopsis Infinite Dimensional Optimization and Control Theory by : Hector O. Fattorini
Download or read book Infinite Dimensional Optimization and Control Theory written by Hector O. Fattorini and published by Cambridge University Press. This book was released on 1999-03-28 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: Treats optimal problems for systems described by ODEs and PDEs, using an approach that unifies finite and infinite dimensional nonlinear programming.
Book Synopsis Foundations of Optimization by : M. S. Bazaraa
Download or read book Foundations of Optimization written by M. S. Bazaraa and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current1y there is a vast amount of literature on nonlinear programming in finite dimensions. The pub1ications deal with convex analysis and severa1 aspects of optimization. On the conditions of optima1ity they deal mainly with generali- tions of known results to more general problems and also with less restrictive assumptions. There are also more general results dealing with duality. There are yet other important publications dealing with algorithmic deve10pment and their applications. This book is intended for researchers in nonlinear programming, and deals mainly with convex analysis, optimality conditions and duality in nonlinear programming. It consolidates the classic results in this area and some of the recent results. The book has been divided into two parts. The first part gives a very comp- hensive background material. Assuming a background of matrix algebra and a senior level course in Analysis, the first part on convex analysis is self-contained, and develops some important results needed for subsequent chapters. The second part deals with optimality conditions and duality. The results are developed using extensively the properties of cones discussed in the first part. This has faci- tated derivations of optimality conditions for equality and inequality constrained problems. Further, minimum-principle type conditions are derived under less restrictive assumptions. We also discuss constraint qualifications and treat some of the more general duality theory in nonlinear programming.
Book Synopsis Convex Optimization Theory by : Dimitri Bertsekas
Download or read book Convex Optimization Theory written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2009-06-01 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).
Book Synopsis Finite-Dimensional Variational Inequalities and Complementarity Problems by : Francisco Facchinei
Download or read book Finite-Dimensional Variational Inequalities and Complementarity Problems written by Francisco Facchinei and published by Springer Science & Business Media. This book was released on 2007-06-14 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is part one of a two-volume work presenting a comprehensive treatment of the finite-dimensional variational inequality and complementarity problem. It covers the basic theory of finite dimensional variational inequalities and complementarity problems. Coverage includes abundant exercises as well as an extensive bibliography. The book will be an enduring reference on the subject and provide the foundation for its sustained growth.
Book Synopsis Optimization by Vector Space Methods by : David G. Luenberger
Download or read book Optimization by Vector Space Methods written by David G. Luenberger and published by John Wiley & Sons. This book was released on 1997-01-23 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.
Book Synopsis Numerical Methods for Unconstrained Optimization and Nonlinear Equations by : J. E. Dennis, Jr.
Download or read book Numerical Methods for Unconstrained Optimization and Nonlinear Equations written by J. E. Dennis, Jr. and published by SIAM. This book was released on 1996-12-01 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.
Book Synopsis Convex Optimization by : Stephen P. Boyd
Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Book Synopsis Numerical Optimization by : Jorge Nocedal
Download or read book Numerical Optimization written by Jorge Nocedal and published by Springer Science & Business Media. This book was released on 2006-06-06 with total page 651 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of this book presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the growing interest in optimization in engineering, science, and business by focusing on methods best suited to practical problems. This edition has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are widely used in practice and are the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience.
Book Synopsis Numerical Optimization by : Jorge Nocedal
Download or read book Numerical Optimization written by Jorge Nocedal and published by Springer Science & Business Media. This book was released on 2006-12-11 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
Download or read book Optimization written by Elijah Polak and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with optimality conditions, algorithms, and discretization tech niques for nonlinear programming, semi-infinite optimization, and optimal con trol problems. The unifying thread in the presentation consists of an abstract theory, within which optimality conditions are expressed in the form of zeros of optimality junctions, algorithms are characterized by point-to-set iteration maps, and all the numerical approximations required in the solution of semi-infinite optimization and optimal control problems are treated within the context of con sistent approximations and algorithm implementation techniques. Traditionally, necessary optimality conditions for optimization problems are presented in Lagrange, F. John, or Karush-Kuhn-Tucker multiplier forms, with gradients used for smooth problems and subgradients for nonsmooth prob lems. We present these classical optimality conditions and show that they are satisfied at a point if and only if this point is a zero of an upper semicontinuous optimality junction. The use of optimality functions has several advantages. First, optimality functions can be used in an abstract study of optimization algo rithms. Second, many optimization algorithms can be shown to use search directions that are obtained in evaluating optimality functions, thus establishing a clear relationship between optimality conditions and algorithms. Third, estab lishing optimality conditions for highly complex problems, such as optimal con trol problems with control and trajectory constraints, is much easier in terms of optimality functions than in the classical manner. In addition, the relationship between optimality conditions for finite-dimensional problems and semi-infinite optimization and optimal control problems becomes transparent.
Book Synopsis Nonlinear Optimal Control Theory by : Leonard David Berkovitz
Download or read book Nonlinear Optimal Control Theory written by Leonard David Berkovitz and published by CRC Press. This book was released on 2012-08-25 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also discusses Hamilton-Jacobi theory. By providing a sufficient and rigorous treatment of finite dimensional control problems, the book equips readers with the foundation to deal with other types of control problems, such as those governed by stochastic differential equations, partial differential equations, and differential games.
Book Synopsis Linear Programming in Infinite-dimensional Spaces by : Edward J. Anderson
Download or read book Linear Programming in Infinite-dimensional Spaces written by Edward J. Anderson and published by John Wiley & Sons. This book was released on 1987 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infinite-dimensional linear programs; Algebraic fundamentals; Topology and duality. Semi-infinite linear programs; The mass-transfer problem; Maximal flow in a dynamic network; Continuous linear programs; Other infinite linear programs; Index.
Book Synopsis Mixed Integer Nonlinear Programming by : Jon Lee
Download or read book Mixed Integer Nonlinear Programming written by Jon Lee and published by Springer Science & Business Media. This book was released on 2011-12-02 with total page 687 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.