Author : Wesam Ashour Barbakh
Publisher : Springer Science & Business Media
ISBN 13 : 3642040047
Total Pages : 231 pages
Book Rating : 4.6/5 (42 download)
Book Synopsis Non-Standard Parameter Adaptation for Exploratory Data Analysis by : Wesam Ashour Barbakh
Download or read book Non-Standard Parameter Adaptation for Exploratory Data Analysis written by Wesam Ashour Barbakh and published by Springer Science & Business Media. This book was released on 2009-09-28 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploratory data analysis, also known as data mining or knowledge discovery from databases, is typically based on the optimisation of a specific function of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by reviewing some standard clustering algorithms and projection algorithms before presenting various non-standard criteria for clustering. The family of algorithms developed are shown to perform better than the standard clustering algorithms on a variety of datasets. We then consider extensions of the basic mappings which maintain some topology of the original data space. Finally we show how reinforcement learning can be used as a clustering mechanism before turning to projection methods. We show that several varieties of reinforcement learning may also be used to define optimal projections for example for principal component analysis, exploratory projection pursuit and canonical correlation analysis. The new method of cross entropy adaptation is then introduced and used as a means of optimising projections. Finally an artificial immune system is used to create optimal projections and combinations of these three methods are shown to outperform the individual methods of optimisation.