Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
New Algorithmic Approaches For Semidefinite Programming With Applications To Combinatorial Optimization
Download New Algorithmic Approaches For Semidefinite Programming With Applications To Combinatorial Optimization full books in PDF, epub, and Kindle. Read online New Algorithmic Approaches For Semidefinite Programming With Applications To Combinatorial Optimization ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Polyhedral and Semidefinite Programming Methods in Combinatorial Optimization by : Levent Tuncel
Download or read book Polyhedral and Semidefinite Programming Methods in Combinatorial Optimization written by Levent Tuncel and published by American Mathematical Soc.. This book was released on with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Aspects of Semidefinite Programming by : E. de Klerk
Download or read book Aspects of Semidefinite Programming written by E. de Klerk and published by Springer Science & Business Media. This book was released on 2002-03-31 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semidefinite programming has been described as linear programming for the year 2000. It is an exciting new branch of mathematical programming, due to important applications in control theory, combinatorial optimization and other fields. Moreover, the successful interior point algorithms for linear programming can be extended to semidefinite programming. In this monograph the basic theory of interior point algorithms is explained. This includes the latest results on the properties of the central path as well as the analysis of the most important classes of algorithms. Several "classic" applications of semidefinite programming are also described in detail. These include the Lovász theta function and the MAX-CUT approximation algorithm by Goemans and Williamson. Audience: Researchers or graduate students in optimization or related fields, who wish to learn more about the theory and applications of semidefinite programming.
Book Synopsis Recent Advances in Algorithms and Combinatorics by : Bruce A. Reed
Download or read book Recent Advances in Algorithms and Combinatorics written by Bruce A. Reed and published by Springer Science & Business Media. This book was released on 2006-05-17 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excellent authors, such as Lovasz, one of the five best combinatorialists in the world; Thematic linking that makes it a coherent collection; Will appeal to a variety of communities, such as mathematics, computer science and operations research
Book Synopsis Handbook of Semidefinite Programming by : Henry Wolkowicz
Download or read book Handbook of Semidefinite Programming written by Henry Wolkowicz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semidefinite programming (SDP) is one of the most exciting and active research areas in optimization. It has and continues to attract researchers with very diverse backgrounds, including experts in convex programming, linear algebra, numerical optimization, combinatorial optimization, control theory, and statistics. This tremendous research activity has been prompted by the discovery of important applications in combinatorial optimization and control theory, the development of efficient interior-point algorithms for solving SDP problems, and the depth and elegance of the underlying optimization theory. The Handbook of Semidefinite Programming offers an advanced and broad overview of the current state of the field. It contains nineteen chapters written by the leading experts on the subject. The chapters are organized in three parts: Theory, Algorithms, and Applications and Extensions.
Book Synopsis Multiscale Optimization Methods and Applications by : William W. Hager
Download or read book Multiscale Optimization Methods and Applications written by William W. Hager and published by Springer Science & Business Media. This book was released on 2006-06-18 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: As optimization researchers tackle larger and larger problems, scale interactions play an increasingly important role. One general strategy for dealing with a large or difficult problem is to partition it into smaller ones, which are hopefully much easier to solve, and then work backwards towards the solution of original problem, using a solution from a previous level as a starting guess at the next level. This volume contains 22 chapters highlighting some recent research. The topics of the chapters selected for this volume are focused on the development of new solution methodologies, including general multilevel solution techniques, for tackling difficult, large-scale optimization problems that arise in science and industry. Applications presented in the book include but are not limited to the circuit placement problem in VLSI design, a wireless sensor location problem, optimal dosages in the treatment of cancer by radiation therapy, and facility location.
Book Synopsis Nonlinear Assignment Problems by : Panos M. Pardalos
Download or read book Nonlinear Assignment Problems written by Panos M. Pardalos and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Assignment Problems (NAPs) are natural extensions of the classic Linear Assignment Problem, and despite the efforts of many researchers over the past three decades, they still remain some of the hardest combinatorial optimization problems to solve exactly. The purpose of this book is to provide in a single volume, major algorithmic aspects and applications of NAPs as contributed by leading international experts. The chapters included in this book are concerned with major applications and the latest algorithmic solution approaches for NAPs. Approximation algorithms, polyhedral methods, semidefinite programming approaches and heuristic procedures for NAPs are included, while applications of this problem class in the areas of multiple-target tracking in the context of military surveillance systems, of experimental high energy physics, and of parallel processing are presented. Audience: Researchers and graduate students in the areas of combinatorial optimization, mathematical programming, operations research, physics, and computer science.
Book Synopsis Polyhedral and Semidefinite Programming Methods in Combinatorial Optimization by : Levent Tunçel
Download or read book Polyhedral and Semidefinite Programming Methods in Combinatorial Optimization written by Levent Tunçel and published by American Mathematical Soc.. This book was released on 2016-05-05 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the early 1960s, polyhedral methods have played a central role in both the theory and practice of combinatorial optimization. Since the early 1990s, a new technique, semidefinite programming, has been increasingly applied to some combinatorial optimization problems. The semidefinite programming problem is the problem of optimizing a linear function of matrix variables, subject to finitely many linear inequalities and the positive semidefiniteness condition on some of the matrix variables. On certain problems, such as maximum cut, maximum satisfiability, maximum stable set and geometric representations of graphs, semidefinite programming techniques yield important new results. This monograph provides the necessary background to work with semidefinite optimization techniques, usually by drawing parallels to the development of polyhedral techniques and with a special focus on combinatorial optimization, graph theory and lift-and-project methods. It allows the reader to rigorously develop the necessary knowledge, tools and skills to work in the area that is at the intersection of combinatorial optimization and semidefinite optimization. A solid background in mathematics at the undergraduate level and some exposure to linear optimization are required. Some familiarity with computational complexity theory and the analysis of algorithms would be helpful. Readers with these prerequisites will appreciate the important open problems and exciting new directions as well as new connections to other areas in mathematical sciences that the book provides.
Book Synopsis Communications, Computation, Control, and Signal Processing by : Arogyaswami Paulraj
Download or read book Communications, Computation, Control, and Signal Processing written by Arogyaswami Paulraj and published by Springer. This book was released on 2012-10-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A. Paulraj*, V. Roychowdhury**, and C. Schaper* * Dept. of Electrical Engineering, Stanford University ** Dept. of Electrical Engineering, UCLA Innumerable conferences are held around the world on the subjects of commu nications, computation, control and signal processing, and on their numerous subdisciplines. Therefore one might not envision a coherent conference encom passing all these areas. However, such an event did take place June 22-26, 1995, at an international symposium held at Stanford University to celebrate Professor Thomas Kailath's sixtieth birthday and to honor the notable con tributions made by him and his students and associates. The depth of these contributions was evident from the participation of so many leading figures in each of these fields. Over the five days of the meeting, there were about 200 at tendees, from eighteen countries, more than twenty government and industrial organizations, and various engineering, mathematics and statistics faculties at nearly 50 different academic institutions. They came not only to celebrate but also to learn and to ponder the threads and the connections that Professor Kailath has discovered and woven among so many apparently disparate areas. The organizers received many comments about the richness of the occasion. A distinguished academic wrote of the conference being "the single most rewarding professional event of my life. " The program is summarized in Table 1. 1; a letter of reflections by Dr. C. Rohrs appears a little later.
Book Synopsis Semidefinite Optimization and Convex Algebraic Geometry by : Grigoriy Blekherman
Download or read book Semidefinite Optimization and Convex Algebraic Geometry written by Grigoriy Blekherman and published by SIAM. This book was released on 2013-03-21 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.
Book Synopsis Handbook on Semidefinite, Conic and Polynomial Optimization by : Miguel F. Anjos
Download or read book Handbook on Semidefinite, Conic and Polynomial Optimization written by Miguel F. Anjos and published by Springer Science & Business Media. This book was released on 2011-11-19 with total page 955 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts: Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization; Algorithms, documenting the directions of current algorithmic development; Software, providing an overview of the state-of-the-art; Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.
Book Synopsis Modeling and Optimization: Theory and Applications by : Tamás Terlaky
Download or read book Modeling and Optimization: Theory and Applications written by Tamás Terlaky and published by Springer Science & Business Media. This book was released on 2012-08-04 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 18-20, 2010. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of optimization techniques in finance, logistics, health, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.
Book Synopsis Paradigms of Combinatorial Optimization by : Vangelis Th. Paschos
Download or read book Paradigms of Combinatorial Optimization written by Vangelis Th. Paschos and published by John Wiley & Sons. This book was released on 2014-08-08 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aim to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. Concepts of Combinatorial Optimization, is divided into three parts: - On the complexity of combinatorial optimization problems, presenting basics about worst-case and randomized complexity; - Classical solution methods, presenting the two most-known methods for solving hard combinatorial optimization problems, that are Branch-and-Bound and Dynamic Programming; - Elements from mathematical programming, presenting fundamentals from mathematical programming based methods that are in the heart of Operations Research since the origins of this field.
Author :Panos M. Pardalos and Henry Wolkowicz Publisher :American Mathematical Soc. ISBN 13 :9780821871256 Total Pages :276 pages Book Rating :4.8/5 (712 download)
Book Synopsis Topics in Semidefinite and Interior-Point Methods by : Panos M. Pardalos and Henry Wolkowicz
Download or read book Topics in Semidefinite and Interior-Point Methods written by Panos M. Pardalos and Henry Wolkowicz and published by American Mathematical Soc.. This book was released on with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents refereed papers presented at the workshop Semidefinite Programming and Interior-Point Approaches for Combinatorial Problems: held at The Fields Institute in May 1996. Semidefinite programming (SDP) is a generalization of linear programming (LP) in that the non-negativity constraints on the variables is replaced by a positive semidefinite constraint on matrix variables. Many of the elegant theoretical properties and powerful solution techniques follow through from LP to SDP. In particular, the primal-dual interior-point methods, which are currently so successful for LP, can be used to efficiently solve SDP problems. In addition to the theoretical and algorithmic questions, SDP has found many important applications in combinatorial optimization, control theory and other areas of mathematical programming. The papers in this volume cover a wide spectrum of recent developments in SDP. The volume would be suitable as a textbook for advanced courses in optimization. It is intended for graduate students and researchers in mathematics, computer science, engineering and operations.
Book Synopsis Sublinear Computation Paradigm by : Naoki Katoh
Download or read book Sublinear Computation Paradigm written by Naoki Katoh and published by Springer Nature. This book was released on 2021-10-19 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book gives an overview of cutting-edge work on a new paradigm called the “sublinear computation paradigm,” which was proposed in the large multiyear academic research project “Foundations of Innovative Algorithms for Big Data.” That project ran from October 2014 to March 2020, in Japan. To handle the unprecedented explosion of big data sets in research, industry, and other areas of society, there is an urgent need to develop novel methods and approaches for big data analysis. To meet this need, innovative changes in algorithm theory for big data are being pursued. For example, polynomial-time algorithms have thus far been regarded as “fast,” but if a quadratic-time algorithm is applied to a petabyte-scale or larger big data set, problems are encountered in terms of computational resources or running time. To deal with this critical computational and algorithmic bottleneck, linear, sublinear, and constant time algorithms are required. The sublinear computation paradigm is proposed here in order to support innovation in the big data era. A foundation of innovative algorithms has been created by developing computational procedures, data structures, and modelling techniques for big data. The project is organized into three teams that focus on sublinear algorithms, sublinear data structures, and sublinear modelling. The work has provided high-level academic research results of strong computational and algorithmic interest, which are presented in this book. The book consists of five parts: Part I, which consists of a single chapter on the concept of the sublinear computation paradigm; Parts II, III, and IV review results on sublinear algorithms, sublinear data structures, and sublinear modelling, respectively; Part V presents application results. The information presented here will inspire the researchers who work in the field of modern algorithms.
Book Synopsis Low-Rank Semidefinite Programming by : Alex Lemon
Download or read book Low-Rank Semidefinite Programming written by Alex Lemon and published by Now Publishers. This book was released on 2016-05-04 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finding low-rank solutions of semidefinite programs is important in many applications. For example, semidefinite programs that arise as relaxations of polynomial optimization problems are exact relaxations when the semidefinite program has a rank-1 solution. Unfortunately, computing a minimum-rank solution of a semidefinite program is an NP-hard problem. This monograph reviews the theory of low-rank semidefinite programming, presenting theorems that guarantee the existence of a low-rank solution, heuristics for computing low-rank solutions, and algorithms for finding low-rank approximate solutions. It then presents applications of the theory to trust-region problems and signal processing.
Book Synopsis Approximation Algorithms and Semidefinite Programming by : Bernd Gärtner
Download or read book Approximation Algorithms and Semidefinite Programming written by Bernd Gärtner and published by Springer Science & Business Media. This book was released on 2012-01-10 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.
Book Synopsis Geometric Algorithms and Combinatorial Optimization by : Martin Grötschel
Download or read book Geometric Algorithms and Combinatorial Optimization written by Martin Grötschel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.