Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Neural Networks For Applied Sciences And Engineering
Download Neural Networks For Applied Sciences And Engineering full books in PDF, epub, and Kindle. Read online Neural Networks For Applied Sciences And Engineering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Neural Networks for Applied Sciences and Engineering by : Sandhya Samarasinghe
Download or read book Neural Networks for Applied Sciences and Engineering written by Sandhya Samarasinghe and published by CRC Press. This book was released on 2016-04-19 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: In response to the exponentially increasing need to analyze vast amounts of data, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition provides scientists with a simple but systematic introduction to neural networks. Beginning with an introductory discussion on the role of neural networks in
Book Synopsis Applied Artificial Neural Network Methods For Engineers And Scientists: Solving Algebraic Equations by : Snehashish Chakraverty
Download or read book Applied Artificial Neural Network Methods For Engineers And Scientists: Solving Algebraic Equations written by Snehashish Chakraverty and published by World Scientific. This book was released on 2021-01-26 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to handle different application problems of science and engineering using expert Artificial Neural Network (ANN). As such, the book starts with basics of ANN along with different mathematical preliminaries with respect to algebraic equations. Then it addresses ANN based methods for solving different algebraic equations viz. polynomial equations, diophantine equations, transcendental equations, system of linear and nonlinear equations, eigenvalue problems etc. which are the basic equations to handle the application problems mentioned in the content of the book. Although there exist various methods to handle these problems, but sometimes those may be problem dependent and may fail to give a converge solution with particular discretization. Accordingly, ANN based methods have been addressed here to solve these problems. Detail ANN architecture with step by step procedure and algorithm have been included. Different example problems are solved with respect to various application and mathematical problems. Convergence plots and/or convergence tables of the solutions are depicted to show the efficacy of these methods. It is worth mentioning that various application problems viz. Bakery problem, Power electronics applications, Pole placement, Electrical Network Analysis, Structural engineering problem etc. have been solved using the ANN based methods.
Book Synopsis Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications by : Zhang, Ming
Download or read book Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications written by Zhang, Ming and published by IGI Global. This book was released on 2010-02-28 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.
Book Synopsis Artificial Neural Networks for Engineering Applications by : Alma Y Alanis
Download or read book Artificial Neural Networks for Engineering Applications written by Alma Y Alanis and published by Academic Press. This book was released on 2019-02-13 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.
Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton
Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Book Synopsis Artificial Higher Order Neural Networks for Modeling and Simulation by : Zhang, Ming
Download or read book Artificial Higher Order Neural Networks for Modeling and Simulation written by Zhang, Ming and published by IGI Global. This book was released on 2012-10-31 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to traditional artificial neural networks"--Provided by publisher.
Book Synopsis Fuzzy Engineering Expert Systems with Neural Network Applications by : Adedeji Bodunde Badiru
Download or read book Fuzzy Engineering Expert Systems with Neural Network Applications written by Adedeji Bodunde Badiru and published by John Wiley & Sons. This book was released on 2002-10-08 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an up-to-date integration of expert systems with fuzzy logic and neural networks. Includes coverage of simulation models not present in other books. Presents cases and examples taken from the authors' experience in research and applying the technology to real-world situations.
Book Synopsis Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering by : Nikola K. Kasabov
Download or read book Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering written by Nikola K. Kasabov and published by Marcel Alencar. This book was released on 1996 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combines the study of neural networks and fuzzy systems with symbolic artificial intelligence (AI) methods to build comprehensive AI systems. Describes major AI problems (pattern recognition, speech recognition, prediction, decision-making, game-playing) and provides illustrative examples. Includes applications in engineering, business and finance.
Book Synopsis Computational Mechanics with Neural Networks by : Genki Yagawa
Download or read book Computational Mechanics with Neural Networks written by Genki Yagawa and published by Springer Nature. This book was released on 2021-02-26 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how neural networks are applied to computational mechanics. Part I presents the fundamentals of neural networks and other machine learning method in computational mechanics. Part II highlights the applications of neural networks to a variety of problems of computational mechanics. The final chapter gives perspectives to the applications of the deep learning to computational mechanics.
Book Synopsis Engineering Applications of Neural Networks by : Giacomo Boracchi
Download or read book Engineering Applications of Neural Networks written by Giacomo Boracchi and published by Springer. This book was released on 2017-07-30 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 18th International Conference on Engineering Applications of Neural Networks, EANN 2017, held in Athens, Greece, in August 2017. The 40 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 83 submissions. The papers cover the topics of deep learning, convolutional neural networks, image processing, pattern recognition, recommendation systems, machine learning, and applications of Artificial Neural Networks (ANN) applications in engineering, 5G telecommunication networks, and audio signal processing. The volume also includes papers presented at the 6th Mining Humanistic Data Workshop (MHDW 2017) and the 2nd Workshop on 5G-Putting Intelligence to the Network Edge (5G-PINE).
Book Synopsis Exploring Neural Networks with C# by : Ryszard Tadeusiewicz
Download or read book Exploring Neural Networks with C# written by Ryszard Tadeusiewicz and published by CRC Press. This book was released on 2017-07-27 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The utility of artificial neural network models lies in the fact that they can be used to infer functions from observations making them especially useful in applications where the complexity of data or tasks makes the design of such functions by hand impractical.Exploring Neural Networks with C# presents the important properties of neural networks
Book Synopsis Artificial Neural Networks in Cancer Diagnosis, Prognosis, and Patient Management by : R. N. G. Naguib
Download or read book Artificial Neural Networks in Cancer Diagnosis, Prognosis, and Patient Management written by R. N. G. Naguib and published by CRC Press. This book was released on 2001-06-22 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: The potential value of artificial neural networks (ANN) as a predictor of malignancy has begun to receive increased recognition. Research and case studies can be found scattered throughout a multitude of journals. Artificial Neural Networks in Cancer Diagnosis, Prognosis, and Patient Management brings together the work of top researchers - primaril
Book Synopsis Artificial Neural Network Applications in Business and Engineering by : Do, Quang Hung
Download or read book Artificial Neural Network Applications in Business and Engineering written by Do, Quang Hung and published by IGI Global. This book was released on 2021-01-08 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today’s modernized market, various disciplines continue to search for universally functional technologies that improve upon traditional processes. Artificial neural networks are a set of statistical modeling tools that are capable of processing nonlinear data with strong accuracy. Due to their complexity, utilizing their potential was previously seen as a challenge. However, with the development of artificial intelligence, this technology has proven to be an effective and efficient problem-solving method. Artificial Neural Network Applications in Business and Engineering is an essential reference source that illustrates recent advancements of artificial neural networks in various professional fields, accompanied by specific case studies and practical examples. Featuring research on topics such as training algorithms, transportation, and computer security, this book is ideally designed for researchers, students, developers, managers, engineers, academicians, industrialists, policymakers, and educators seeking coverage on modern trends in artificial neural networks and their real-world implementations.
Book Synopsis Neural Networks in Bioprocessing and Chemical Engineering by : D. R. Baughman
Download or read book Neural Networks in Bioprocessing and Chemical Engineering written by D. R. Baughman and published by Academic Press. This book was released on 1995 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks have received a great deal of attention among scientists and engineers. In chemical engineering, neural computing has moved from pioneering projects toward mainstream industrial applications. This book introduces the fundamental principles of neural computing, and is the first to focus on its practical applications in bioprocessing and chemical engineering. Examples, problems, and 10 detailed case studies demonstrate how to develop, train, and apply neural networks. A disk containing input data files for all illustrative examples, case studies, and practice problems provides the opportunity for hands-on experience. An important goal of the book is to help the student or practitioner learn and implement neural networks quickly and inexpensively using commercially available, PC-based software tools. Detailed network specifications and training procedures are included for all neural network examples discussed in the book.
Author :Management Association, Information Resources Publisher :IGI Global ISBN 13 :1668424096 Total Pages :1575 pages Book Rating :4.6/5 (684 download)
Book Synopsis Research Anthology on Artificial Neural Network Applications by : Management Association, Information Resources
Download or read book Research Anthology on Artificial Neural Network Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2021-07-16 with total page 1575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.
Book Synopsis Neural Networks: Computational Models and Applications by : Huajin Tang
Download or read book Neural Networks: Computational Models and Applications written by Huajin Tang and published by Springer Science & Business Media. This book was released on 2007-03-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.
Author :Frank C. Hoppensteadt Publisher :Springer Science & Business Media ISBN 13 :1461218284 Total Pages :404 pages Book Rating :4.4/5 (612 download)
Book Synopsis Weakly Connected Neural Networks by : Frank C. Hoppensteadt
Download or read book Weakly Connected Neural Networks written by Frank C. Hoppensteadt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Devoted to local and global analysis of weakly connected systems with applications to neurosciences, this book uses bifurcation theory and canonical models as the major tools of analysis. It presents a systematic and well motivated development of both weakly connected system theory and mathematical neuroscience, addressing bifurcations in neuron and brain dynamics, synaptic organisations of the brain, and the nature of neural codes. The authors present classical results together with the most recent developments in the field, making this a useful reference for researchers and graduate students in various branches of mathematical neuroscience.