Neural Network Control of Nonlinear Discrete-Time Systems

Download Neural Network Control of Nonlinear Discrete-Time Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420015451
Total Pages : 624 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Control of Nonlinear Discrete-Time Systems by : Jagannathan Sarangapani

Download or read book Neural Network Control of Nonlinear Discrete-Time Systems written by Jagannathan Sarangapani and published by CRC Press. This book was released on 2018-10-03 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent systems are a hallmark of modern feedback control systems. But as these systems mature, we have come to expect higher levels of performance in speed and accuracy in the face of severe nonlinearities, disturbances, unforeseen dynamics, and unstructured uncertainties. Artificial neural networks offer a combination of adaptability, parallel processing, and learning capabilities that outperform other intelligent control methods in more complex systems. Borrowing from Biology Examining neurocontroller design in discrete-time for the first time, Neural Network Control of Nonlinear Discrete-Time Systems presents powerful modern control techniques based on the parallelism and adaptive capabilities of biological nervous systems. At every step, the author derives rigorous stability proofs and presents simulation examples to demonstrate the concepts. Progressive Development After an introduction to neural networks, dynamical systems, control of nonlinear systems, and feedback linearization, the book builds systematically from actuator nonlinearities and strict feedback in nonlinear systems to nonstrict feedback, system identification, model reference adaptive control, and novel optimal control using the Hamilton-Jacobi-Bellman formulation. The author concludes by developing a framework for implementing intelligent control in actual industrial systems using embedded hardware. Neural Network Control of Nonlinear Discrete-Time Systems fosters an understanding of neural network controllers and explains how to build them using detailed derivations, stability analysis, and computer simulations.

Neural Network Control Of Robot Manipulators And Non-Linear Systems

Download Neural Network Control Of Robot Manipulators And Non-Linear Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780748405961
Total Pages : 470 pages
Book Rating : 4.4/5 (59 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Control Of Robot Manipulators And Non-Linear Systems by : F W Lewis

Download or read book Neural Network Control Of Robot Manipulators And Non-Linear Systems written by F W Lewis and published by CRC Press. This book was released on 1998-11-30 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been great interest in "universal controllers" that mimic the functions of human processes to learn about the systems they are controlling on-line so that performance improves automatically. Neural network controllers are derived for robot manipulators in a variety of applications including position control, force control, link flexibility stabilization and the management of high-frequency joint and motor dynamics. The first chapter provides a background on neural networks and the second on dynamical systems and control. Chapter three introduces the robot control problem and standard techniques such as torque, adaptive and robust control. Subsequent chapters give design techniques and Stability Proofs For NN Controllers For Robot Arms, Practical Robotic systems with high frequency vibratory modes, force control and a general class of non-linear systems. The last chapters are devoted to discrete- time NN controllers. Throughout the text, worked examples are provided.

Neural Systems for Control

Download Neural Systems for Control PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080537391
Total Pages : 375 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Neural Systems for Control by : Omid Omidvar

Download or read book Neural Systems for Control written by Omid Omidvar and published by Elsevier. This book was released on 1997-02-24 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis

Discrete-Time Recurrent Neural Control

Download Discrete-Time Recurrent Neural Control PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351377426
Total Pages : 205 pages
Book Rating : 4.3/5 (513 download)

DOWNLOAD NOW!


Book Synopsis Discrete-Time Recurrent Neural Control by : Edgar N. Sanchez

Download or read book Discrete-Time Recurrent Neural Control written by Edgar N. Sanchez and published by CRC Press. This book was released on 2018-09-03 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. The simulation results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, to establish its properties. The book contains two sections: the first focuses on the analyses of control techniques; the second is dedicated to illustrating results of real-time applications. It also provides solutions for the output trajectory tracking problem of unknown nonlinear systems based on sliding modes and inverse optimal control scheme. "This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems. The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market. It is an excellent book after all." — Guanrong Chen, City University of Hong Kong "This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author." — Alma Y. Alanis, University of Guadalajara, Mexico "This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones." — Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India

Discrete-Time High Order Neural Control

Download Discrete-Time High Order Neural Control PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540782893
Total Pages : 116 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Discrete-Time High Order Neural Control by : Edgar N. Sanchez

Download or read book Discrete-Time High Order Neural Control written by Edgar N. Sanchez and published by Springer. This book was released on 2008-06-24 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.

Adaptive Sliding Mode Neural Network Control for Nonlinear Systems

Download Adaptive Sliding Mode Neural Network Control for Nonlinear Systems PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128154322
Total Pages : 190 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Adaptive Sliding Mode Neural Network Control for Nonlinear Systems by : Yang Li

Download or read book Adaptive Sliding Mode Neural Network Control for Nonlinear Systems written by Yang Li and published by Academic Press. This book was released on 2018-11-16 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adaptive Sliding Mode Neural Network Control for Nonlinear Systems introduces nonlinear systems basic knowledge, analysis and control methods, and applications in various fields. It offers instructive examples and simulations, along with the source codes, and provides the basic architecture of control science and engineering. - Introduces nonlinear systems' basic knowledge, analysis and control methods, along with applications in various fields - Offers instructive examples and simulations, including source codes - Provides the basic architecture of control science and engineering

Model Free Adaptive Control

Download Model Free Adaptive Control PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466594187
Total Pages : 400 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Model Free Adaptive Control by : Zhongsheng Hou

Download or read book Model Free Adaptive Control written by Zhongsheng Hou and published by CRC Press. This book was released on 2013-09-24 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Free Adaptive Control: Theory and Applications summarizes theory and applications of model-free adaptive control (MFAC). MFAC is a novel adaptive control method for the unknown discrete-time nonlinear systems with time-varying parameters and time-varying structure, and the design and analysis of MFAC merely depend on the measured input and output data of the controlled plant, which makes it more applicable for many practical plants. This book covers new concepts, including pseudo partial derivative, pseudo gradient, pseudo Jacobian matrix, and generalized Lipschitz conditions, etc.; dynamic linearization approaches for nonlinear systems, such as compact-form dynamic linearization, partial-form dynamic linearization, and full-form dynamic linearization; a series of control system design methods, including MFAC prototype, model-free adaptive predictive control, model-free adaptive iterative learning control, and the corresponding stability analysis and typical applications in practice. In addition, some other important issues related to MFAC are also discussed. They are the MFAC for complex connected systems, the modularized controller designs between MFAC and other control methods, the robustness of MFAC, and the symmetric similarity for adaptive control system design. The book is written for researchers who are interested in control theory and control engineering, senior undergraduates and graduated students in engineering and applied sciences, as well as professional engineers in process control.

Stable Adaptive Neural Network Control

Download Stable Adaptive Neural Network Control PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475765770
Total Pages : 296 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Stable Adaptive Neural Network Control by : S.S. Ge

Download or read book Stable Adaptive Neural Network Control written by S.S. Ge and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen a rapid development of neural network control tech niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings. In spite of these remarkable advances in neural control field, due to the complexity of nonlinear systems, the present research on adaptive neural control is still focused on the development of fundamental methodologies. From a theoretical viewpoint, there is, in general, lack of a firmly mathematical basis in stability, robustness, and performance analysis of neural network adaptive control systems. This book is motivated by the need for systematic design approaches for stable adaptive control using approximation-based techniques. The main objec tives of the book are to develop stable adaptive neural control strategies, and to perform transient performance analysis of the resulted neural control systems analytically. Other linear-in-the-parameter function approximators can replace the linear-in-the-parameter neural networks in the controllers presented in the book without any difficulty, which include polynomials, splines, fuzzy systems, wavelet networks, among others. Stability is one of the most important issues being concerned if an adaptive neural network controller is to be used in practical applications.

Adaptive Dynamic Programming: Single and Multiple Controllers

Download Adaptive Dynamic Programming: Single and Multiple Controllers PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811317127
Total Pages : 278 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Adaptive Dynamic Programming: Single and Multiple Controllers by : Ruizhuo Song

Download or read book Adaptive Dynamic Programming: Single and Multiple Controllers written by Ruizhuo Song and published by Springer. This book was released on 2018-12-28 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.

Stable Adaptive Control and Estimation for Nonlinear Systems

Download Stable Adaptive Control and Estimation for Nonlinear Systems PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471460974
Total Pages : 564 pages
Book Rating : 4.4/5 (714 download)

DOWNLOAD NOW!


Book Synopsis Stable Adaptive Control and Estimation for Nonlinear Systems by : Jeffrey T. Spooner

Download or read book Stable Adaptive Control and Estimation for Nonlinear Systems written by Jeffrey T. Spooner and published by John Wiley & Sons. This book was released on 2004-04-07 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thema dieses Buches ist die Anwendung neuronaler Netze und Fuzzy-Logic-Methoden zur Identifikation und Steuerung nichtlinear-dynamischer Systeme. Dabei werden fortgeschrittene Konzepte der herkömmlichen Steuerungstheorie mit den intuitiven Eigenschaften intelligenter Systeme kombiniert, um praxisrelevante Steuerungsaufgaben zu lösen. Die Autoren bieten viel Hintergrundmaterial; ausgearbeitete Beispiele und Übungsaufgaben helfen Studenten und Praktikern beim Vertiefen des Stoffes. Lösungen zu den Aufgaben sowie MATLAB-Codebeispiele sind ebenfalls enthalten.

Differential Neural Networks for Robust Nonlinear Control

Download Differential Neural Networks for Robust Nonlinear Control PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9810246242
Total Pages : 455 pages
Book Rating : 4.8/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Differential Neural Networks for Robust Nonlinear Control by : Alexander S. Poznyak

Download or read book Differential Neural Networks for Robust Nonlinear Control written by Alexander S. Poznyak and published by World Scientific. This book was released on 2001 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical, etc.).

Neural Network Control Of Robot Manipulators And Non-Linear Systems

Download Neural Network Control Of Robot Manipulators And Non-Linear Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 100016277X
Total Pages : 468 pages
Book Rating : 4.0/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Control Of Robot Manipulators And Non-Linear Systems by : F W Lewis

Download or read book Neural Network Control Of Robot Manipulators And Non-Linear Systems written by F W Lewis and published by CRC Press. This book was released on 2020-08-14 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been great interest in "universal controllers" that mimic the functions of human processes to learn about the systems they are controlling on-line so that performance improves automatically. Neural network controllers are derived for robot manipulators in a variety of applications including position control, force control, link flexibility stabilization and the management of high-frequency joint and motor dynamics. The first chapter provides a background on neural networks and the second on dynamical systems and control. Chapter three introduces the robot control problem and standard techniques such as torque, adaptive and robust control. Subsequent chapters give design techniques and Stability Proofs For NN Controllers For Robot Arms, Practical Robotic systems with high frequency vibratory modes, force control and a general class of non-linear systems. The last chapters are devoted to discrete- time NN controllers. Throughout the text, worked examples are provided.

Recent Advances in Intelligent Control Systems

Download Recent Advances in Intelligent Control Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 184882548X
Total Pages : 381 pages
Book Rating : 4.8/5 (488 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Intelligent Control Systems by : Wen Yu

Download or read book Recent Advances in Intelligent Control Systems written by Wen Yu and published by Springer Science & Business Media. This book was released on 2009-05-27 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Recent Advances in Intelligent Control Systems" gathers contributions from workers around the world and presents them in four categories according to the style of control employed: fuzzy control; neural control; fuzzy neural control; and intelligent control. The contributions illustrate the interdisciplinary antecedents of intelligent control and contrast its results with those of more traditional control methods. A variety of design examples, drawn primarily from robotics and mechatronics but also representing process and production engineering, large civil structures, network flows, and others, provide instances of the application of computational intelligence for control. Presenting state-of-the-art research, this collection will be of benefit to researchers in automatic control, automation, computer science (especially artificial intelligence) and mechatronics while graduate students and practicing control engineers working with intelligent systems will find it a good source of study material.

Robust Discrete-Time Flight Control of UAV with External Disturbances

Download Robust Discrete-Time Flight Control of UAV with External Disturbances PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030579573
Total Pages : 207 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Robust Discrete-Time Flight Control of UAV with External Disturbances by : Shuyi Shao

Download or read book Robust Discrete-Time Flight Control of UAV with External Disturbances written by Shuyi Shao and published by Springer Nature. This book was released on 2020-09-26 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies selected discrete-time flight control schemes for fixed-wing unmanned aerial vehicle (UAV) systems in the presence of system uncertainties, external disturbances and input saturation. The main contributions of this book for UAV systems are as follows: (i) the proposed integer-order discrete-time control schemes are based on the designed discrete-time disturbance observers (DTDOs) and the neural network (NN); and (ii) the fractional-order discrete-time control schemes are developed by using the fractional-order calculus theory, the NN and the DTDOs. The book offers readers a good understanding of how to establish discrete-time tracking control schemes for fixed-wing UAV systems subject to system uncertainties, external wind disturbances and input saturation. It represents a valuable reference guide for academic research on uncertain UAV systems, and can also support advanced / Ph.D. studies on control theory and engineering.

Optimal Networked Control Systems with MATLAB

Download Optimal Networked Control Systems with MATLAB PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482235269
Total Pages : 335 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Optimal Networked Control Systems with MATLAB by : Jagannathan Sarangapani

Download or read book Optimal Networked Control Systems with MATLAB written by Jagannathan Sarangapani and published by CRC Press. This book was released on 2018-09-03 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal Networked Control Systems with MATLAB® discusses optimal controller design in discrete time for networked control systems (NCS). The authors apply several powerful modern control techniques in discrete time to the design of intelligent controllers for such NCS. Detailed derivations, rigorous stability proofs, computer simulation examples, and downloadable MATLAB® codes are included for each case. The book begins by providing background on NCS, networked imperfections, dynamical systems, stability theory, and stochastic optimal adaptive controllers in discrete time for linear and nonlinear systems. It lays the foundation for reinforcement learning-based optimal adaptive controller use for finite and infinite horizons. The text then: Introduces quantization effects for linear and nonlinear NCS, describing the design of stochastic adaptive controllers for a class of linear and nonlinear systems Presents two-player zero-sum game-theoretic formulation for linear systems in input–output form enclosed by a communication network Addresses the stochastic optimal control of nonlinear NCS by using neuro dynamic programming Explores stochastic optimal design for nonlinear two-player zero-sum games under communication constraints Treats an event-sampled distributed NCS to minimize transmission of state and control signals within the feedback loop via the communication network Covers distributed joint optimal network scheduling and control design for wireless NCS, as well as the effect of network protocols on the wireless NCS controller design An ideal reference for graduate students, university researchers, and practicing engineers, Optimal Networked Control Systems with MATLAB® instills a solid understanding of neural network controllers and how to build them.

Advances in Neural Networks- ISNN 2013

Download Advances in Neural Networks- ISNN 2013 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642390684
Total Pages : 676 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Advances in Neural Networks- ISNN 2013 by : Chengan Guo

Download or read book Advances in Neural Networks- ISNN 2013 written by Chengan Guo and published by Springer. This book was released on 2013-07-04 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNCS 7951 and 7952 constitutes the refereed proceedings of the 10th International Symposium on Neural Networks, ISNN 2013, held in Dalian, China, in July 2013. The 157 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in following topics: computational neuroscience, cognitive science, neural network models, learning algorithms, stability and convergence analysis, kernel methods, large margin methods and SVM, optimization algorithms, varational methods, control, robotics, bioinformatics and biomedical engineering, brain-like systems and brain-computer interfaces, data mining and knowledge discovery and other applications of neural networks.

Nonlinear and Optimal Control Systems

Download Nonlinear and Optimal Control Systems PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780471042358
Total Pages : 584 pages
Book Rating : 4.0/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear and Optimal Control Systems by : Thomas L. Vincent

Download or read book Nonlinear and Optimal Control Systems written by Thomas L. Vincent and published by John Wiley & Sons. This book was released on 1997-06-23 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for one-semester introductory senior-or graduate-level course, the authors provide the student with an introduction of analysis techniques used in the design of nonlinear and optimal feedback control systems. There is special emphasis on the fundamental topics of stability, controllability, and optimality, and on the corresponding geometry associated with these topics. Each chapter contains several examples and a variety of exercises.