Author : Steven B. Damelin
Publisher : John Wiley & Sons
ISBN 13 : 1394196776
Total Pages : 196 pages
Book Rating : 4.3/5 (941 download)
Book Synopsis Near Extensions and Alignment of Data in R^n by : Steven B. Damelin
Download or read book Near Extensions and Alignment of Data in R^n written by Steven B. Damelin and published by John Wiley & Sons. This book was released on 2024-01-29 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive resource illustrating the mathematical richness of Whitney Extension Problems, enabling readers to develop new insights, tools, and mathematical techniques The Whitney Near Extension Problem demonstrates a range of hitherto unknown connections between current research problems in engineering, mathematics, and data science, exploring the mathematical richness of near Whitney Extension Problems, and presenting a new nexus of applied, pure and computational harmonic analysis, approximation theory, data science, and real algebraic geometry. For example, the book uncovers connections between near Whitney Extension Problems and the problem of alignment of data in Euclidean space, an area of considerable interest in computer vision. Written by a highly qualified author, The Whitney Near Extension Problem includes information on: Areas of mathematics and statistics, such as harmonic analysis, functional analysis, and approximation theory, that have driven significant advances in the field Development of algorithms to enable the processing and analysis of huge amounts of data and data sets Why and how the mathematical underpinning of many current data science tools needs to be better developed to be useful New insights, potential tools, and mathematical techniques to solve problems in Whitney extensions, signal processing, shortest paths, clustering, computer vision, optimal transport, manifold learning, minimal energy, and equidistribution Providing comprehensive coverage of several subjects, The Whitney Near Extension Problem is an essential resource for mathematicians, applied mathematicians, and engineers working on problems related to data science, signal processing, computer vision, manifold learning, and optimal transport.