Multiscale Investigation of Fluid Transport in Gas Shales

Download Multiscale Investigation of Fluid Transport in Gas Shales PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Investigation of Fluid Transport in Gas Shales by : Robert J. Heller

Download or read book Multiscale Investigation of Fluid Transport in Gas Shales written by Robert J. Heller and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on developing an improved understanding of fluid flow in gas shales. The problem is studied at multiple scales, and using a variety of approaches spanning several disciplines. In Chapter 2, Adsorption of Methane and Carbon Dioxide on Gas Shale and Pure Mineral Samples, we present measurements of methane and carbon dioxide adsorption isotherms at 40°C on gas shale samples from the Barnett, Eagle Ford, Marcellus and Montney reservoirs. Carbon dioxide isotherms were included to assess its potential for preferential adsorption, with implications for its use as a fracturing fluid and/or storage in depleted shale reservoirs. To better understand how the individual mineral constituents that comprise shales contribute to adsorption, measurements were made on samples of pure carbon, illite and kaolinite as well. The resultant volumetric swelling strain was also measured as a function of pressure/adsorption. In Chapter 3, Experimental Investigation of Matrix Permeability of Gas Shales, we present laboratory experiments examining the effects of confining stress and pore pressure on permeability. Experiments were carried out on intact core samples from the Barnett, Eagle Ford, Marcellus and Montney shale reservoirs. The methodology we used to measure permeability allows us to separate the reduction of permeability with depletion (due to the resultant increase in effective confining stress) and the increase in permeability associated with Knudsen diffusion and molecular slippage (also known as Klinkenberg) effects at very low pore pressure. By separating these effects, we are able to estimate the relative contribution of both Darcy and diffusive fluxes to total flow in depleted reservoirs. Our data show that the effective permeability of the rock is significantly enhanced at very low pore pressures (

Multiscale Investigation of Fluid Transport and Enhanced Recovery in Shale

Download Multiscale Investigation of Fluid Transport and Enhanced Recovery in Shale PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Investigation of Fluid Transport and Enhanced Recovery in Shale by : Youssef Magdy Abdou Mohamed Elkady

Download or read book Multiscale Investigation of Fluid Transport and Enhanced Recovery in Shale written by Youssef Magdy Abdou Mohamed Elkady and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2019, the U.S. produced 75% of its natural gas from shales and 59% of its oil from tight oil resources. Multistage hydraulic fracturing along with horizontal pad drilling enabled operators to increase significantly production from these resources. Despite the vastness of shale resources, recovery factors are small typically, amounting to 5-10% for oil and ~25% for gas. In this work we examine various enhanced recovery techniques across multiple length scales to gain a better understanding of enhanced resource recovery mechanisms resulting from injection of gas, such as carbon dioxide (CO2). In doing so, we develop in-house shale characterization experimental methods to quantify fluid flow, storage, and recovery in the laboratory. An experimental workflow is presented for rock characterization (porosity, permeability, and adsorption) to quantify accurately gas storage and flow needed for enhanced gas recovery (EGR) experiments. Both pulse decay and Computed Tomography (CT) were used independently to establish consistency between results derived from each method. New image processing routines for CT data were developed that better match mass balance derived porosity and storativity results compared to conventional CT methods. Measured porosity values using helium (He) for each sample proved to be constant at various equilibrium pore pressures justifying its use as a reference gas for excess adsorption computations for other gases studied. Nitrogen (N2), methane (CH4), krypton (Kr), and CO2 apparent permeability and storativity at different pore pressures were determined. All adsorptive gases, except CO2, exhibited monolayer Langmuir adsorption behavior. CO2 uniquely showed multilayer behavior that was observed in two cores (Eagle Ford (EF1) and Wolfcamp (WC2)). The impact of adsorption on gas permeability was captured in our experiments showing a negative correlation between adsorption affinity and permeability. For instance, Kr and CO2 reduced the liquid-like permeability value determined using He by factors of 2 and 8, respectively, for sample EF1. Finally, a persistent five-fold reduction in permeability was observed in sample WC2 after CO2 exposure that is attributed to kerogen swelling or matrix softening. The degree of kerogen swelling is impacted by the affinity of the gas to adsorb and its ability to dissolve into kerogen. Matrix softening, on the other hand, enhances compaction of the pore space under constant effective stresses. Diverse diagnostics across multiple scales were used to examine the impact of CO2-water fluids on oil recovery and matrix flow on both core and micron scales. Enhanced oil recovery (EOR) was investigated on a Utica (W2-2) core that was artificially split and saturated with crude oil for 3 months. The core was cut to create a conductive pathway and to increase surface area to help oil saturate the sample. Core-scale examinations using pulse decay, injection experiments, and CT showed no material enhancement to matrix fluid flow or oil recovery using dry supercritical CO2, water-saturated CO2, or carbonated water. Approximately 87% of the in-situ oil was recovered using dry supercritical CO2 initially without any further recovery. CT visualizations showed that most of the oil resided in the main fracture with small amounts of oil residing in the matrix. Potential enhancement in core-scale matrix flow was investigated by conducting He pressure pulses before and after a carbonate-rich Eagle Ford (EF-1) sample was exposed to carbonated water for 6 months. Measured permeability values were identical before and after exposure to the acidic fluid. Micron-scale findings, on the other hand, using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and micro-CT showed vugs and pits, from calcite dissolution, ranging from 1 micro-m to 10's micro-m in size in samples exposed to carbonated water. These samples were exposed to carbonated water in either a batch reactor setting or a core-scale carbonated water injection experiment. The wet supercritical CO2 phase did not induce any observable carbonate dissolution in the shale sample tested. Finally, it was determined that gold coating of the sample (a preparation step needed for SEM imaging) has no impact on fluid-rock interaction during our experiments. A novel experimental setup was designed for investigating EGR in shale cores. The detailed sample characterization conducted on both samples (EF1 and WC2) was used to assess initial rock storativity, adsorption, and permeability that are vital for proper experimental planning given the small pore volumes in shales. Experiments were run with Kr or CH4 as in-situ gases and CO2 or N2 as injection gases. Continuous Kr gas injection experiments showed consistent results between mass balance and CT-derived results establishing reliability in our CT depictions. CO2 gas injection had a better initial displacement efficiency compared to N2 when displacing in-situ Kr. Homogeneous sample WC2 required approximately four times fewer pore volume injections to produce the entire original gas in place compared to sample EF1 that had two CT-visible conductive pathways or microcracks. Finally, core-scale findings reveal that continuous gas injection is more effective than huff-n-puff for enhancing gas recovery on a pore volume injected basis. Core-scale simulations using CMG GEM were created to mimic and validate lab pulse decay and EGR experiments. Porosity, permeability, and adsorption values were validated for various pressure pulses across both cores (EF1 and WC2) using all the gases investigated (He, N2, Kr, CH4, and CO2). Coal bed methane modeling in CMG GEM was utilized for matching highly adsorptive gases (Kr and CO2) due to a delayed downstream response given the experimentally determined porosity, permeability, and adsorption values. Another critical parameter, diffusion characteristic time (t*), was identified using this model during the history matching process that quantifies a mass transfer resistance to fracture flow due to fracture-matrix gas exchange. Although our experiments were not designed to measure directly t*, various pressure pulses for CO2 and Kr required a diffusion time of 1.44-1.92 hrs (0.06-0.08 days) to match our pressure pulses using coal bed methane modeling. A continuous gas injection experiment was simulated in CMG GEM that matched the experimental pressure history, recovery results, and CT visualizations for sample EF1. Sensitivity studies on diffusion time revealed its strong influence on recovery in low permeability areas that are predominant during late production. A huff-n-puff experiment was simulated given the same model parameters as the history matched continuous injection experiment. Huff-n-puff had a poorer recovery curve compared to continuous injection due to gas entrapment away from the microcracks with each cycle. Finally, core-scale simulations show that long diffusion times are favorable for huff-n-puff but disadvantageous for continuous injection emphasizing the importance of sample characterization, including transport properties, before evaluating the different EGR techniques. Learnings from core-scale experiments and simulations were translated to assess EGR applicability at field scale. Multiple reservoir uncertainties (porosity, stimulated permeability, diffusion time) and operational decisions (e.g. injection and soak times) were explored to understand their influence on CH4 recovery and CO2 storage for continuous injection and huff-n-puff. A simplified CMG GEM field model was created that utilized 1300 m horizontal wells that have 13 fracture stages with 4 clusters per stage. Field continuous injection scenarios yielded a loss in cumulative CH4 production compared to cases with primary production only over a 20 year period. Injection started after 10 years of primary production; however, the economic benefits from CO2 storage outweighed CH4 losses in cases with short diffusion times (

Multiscale Analysis of Mechanical and Transport Properties in Shale Gas Reservoirs

Download Multiscale Analysis of Mechanical and Transport Properties in Shale Gas Reservoirs PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 127 pages
Book Rating : 4.:/5 (126 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Analysis of Mechanical and Transport Properties in Shale Gas Reservoirs by : Mohammad Hatami

Download or read book Multiscale Analysis of Mechanical and Transport Properties in Shale Gas Reservoirs written by Mohammad Hatami and published by . This book was released on 2021 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation focuses on multiscale analysis in shale to improve understanding of mechanical and transport properties in shale gas reservoirs. Laboratory measurements of the effects of constant confining pressure (CCP), and constant effective stress (CES) on permeability were coupled with multiscale finite element simulations and the development of a comprehensive apparent permeability model to study the mechanical behavior of shale and transport mechanisms in shale. Predicting long-term production from gas shale reservoirs is a challenging task due to changes in effective stress and permeability during gas production. Unlike coal, the variation of sorbing gas permeability with pore pressure in shale does not always feature a biphasic trend under a constant confining pressure. The present contribution demonstrates that the biphasic dependence of permeability on pore pressure depends on a number of physical and geometrical factors, each with a distinct impact on gas permeability. This includes pore size, adsorption isotherm, and the variation of gas viscosity with pore pressure.

Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs

Download Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0128172894
Total Pages : 354 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs by : Jianchao Cai

Download or read book Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs written by Jianchao Cai and published by Elsevier. This book was released on 2019-01-24 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs presents a comprehensive look at these new methods and technologies for the petrophysical characterization of unconventional reservoirs, including recent theoretical advances and modeling on fluids transport in unconventional reservoirs. The book is a valuable tool for geoscientists and engineers working in academia and industry. Many novel technologies and approaches, including petrophysics, multi-scale modelling, rock reconstruction and upscaling approaches are discussed, along with the challenge of the development of unconventional reservoirs and the mechanism of multi-phase/multi-scale flow and transport in these structures. Includes both practical and theoretical research for the characterization of unconventional reservoirs Covers the basic approaches and mechanisms for enhanced recovery techniques in unconventional reservoirs Presents the latest research in the fluid transport processes in unconventional reservoirs

Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems

Download Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (881 download)

DOWNLOAD NOW!


Book Synopsis Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems by : Craig Matthew Freeman

Download or read book Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems written by Craig Matthew Freeman and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The hydrocarbon resources found in shale reservoirs have become an important energy source in recent years. Unconventional geological and engineering features of shale systems pose challenges to the characterization of these systems. These challenges have impeded efficient economic development of shale resources. New fundamental insights and tools are needed to improve the state of shale gas development. Few attempts have been made to model the compositional behavior of fluids in shale gas reservoirs. The transport and storage of reservoir fluids in shale is controlled by multiple distinct micro-scale physical phenomena. These phenomena include preferential Knudsen diffusion, differential desorption, and capillary critical effects. Together, these phenomena cause significant changes in fluid composition in the subsurface and a measureable change in the composition of the produced gas over time. In order to quantify this compositional change we developed a numerical model describing the coupled processes of desorption, diffusion, and phase behavior in heterogeneous ultra-tight rocks as a function of pore size. The model captures the various configurations of fractures induced by shale gas fracture stimulation. Through modeling of the physics at the macro-scale (e.g. reservoir-scale hydraulic fractures) and micro-scale (e.g. Knudsen diffusion in kerogen nanopores), we illustrate how and why gas composition changes spatially and temporally during production. We compare the results of our numerical model against measured composition data obtained at regular intervals from shale gas wells. We utilize the characteristic behaviors explicated by the model results to identify features in the measured data. We present a basis for a new method of production data analysis incorporating gas composition measurements in order to develop a more complete diagnostic process. Distinct fluctuations in the flowing gas composition are shown to uniquely identify the onset of fracture interference in horizontal wells with multiple transverse hydraulic fractures. The timescale and durations of the transitional flow regimes in shales are quantified using these measured composition data. These assessments appear to be robust even for high levels of noise in the rate and pressure data. Integration of the compositional shift analysis of this work with modern production analysis is used to infer reservoir properties. This work extends the current understanding of flow behavior and well performance for shale gas systems to encompass the physical phenomena leading to compositional change. This new understanding may be used to aid well performance analysis, optimize fracture and completion design, and improve the accuracy of reserves estimates. In this work we contribute a numerical model which captures multicomponent desorption, diffusion, and phase behavior in ultra-tight rocks. We also describe a workflow for incorporating measured gas composition data into modern production analysis. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/151782

Modeling of Gas Transport in Shale Matrix from Nanoscale to Reservoir Scale

Download Modeling of Gas Transport in Shale Matrix from Nanoscale to Reservoir Scale PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 9780323902335
Total Pages : 0 pages
Book Rating : 4.9/5 (23 download)

DOWNLOAD NOW!


Book Synopsis Modeling of Gas Transport in Shale Matrix from Nanoscale to Reservoir Scale by : Keliu Wu

Download or read book Modeling of Gas Transport in Shale Matrix from Nanoscale to Reservoir Scale written by Keliu Wu and published by Elsevier. This book was released on 2024-10-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineers continue to understand shale gas reservoirs and how to improve well productivity. One aspect is through pore transport, but this is an advanced level of research unlike any conventional method or model. Modeling of Gas Transport in Shale Matrix from Nanoscale to Reservoir Scale delivers a necessary reference to engineers and researchers on how to approach, model, and validate gas transport through multi-scale phenomena. Bridging between theory and practical, the reference walks the engineer through the scope of the project, establishing a model, illustrating the case study through workflow charts and follow up actions needed, then rounds out with project results, remaining challenges, and future references to advance learning. Supported from a strong group of experts in the field, Modeling of Gas Transport in Shale Matrix from Nanoscale to Reservoir Scale gives today's engineers and researchers the most advanced research and field application knowledge to understand unconventional shale gas and increase overall well productivity.

Transport in Shale Reservoirs

Download Transport in Shale Reservoirs PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0128178612
Total Pages : 150 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Transport in Shale Reservoirs by : Kun Sang Lee

Download or read book Transport in Shale Reservoirs written by Kun Sang Lee and published by Gulf Professional Publishing. This book was released on 2019-02-20 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transport in Shale Reservoirs fills the need for a necessary, integrative approach on shale reservoirs. It delivers both the fundamental theories of transport in shale reservoirs and the most recent advancements in the recovery of shale oil and gas in one convenient reference. Shale reservoirs have distinctive features dissimilar to those of conventional reservoirs, thus an accurate evaluation on the behavior of shale gas reservoirs requires an integrated understanding on their characteristics and the transport of reservoir and fluids. Updates on the various transport mechanisms in shale, such as molecular diffusion and phase behavior in nano-pores Applies theory to practice through simulation in both shale oil and gas Presents an up-to-date reference on remaining challenges, such as organic material in the shale simulation and multicomponent transport in CO2 injection processes

Shale

Download Shale PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119066891
Total Pages : 624 pages
Book Rating : 4.1/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Shale by : Thomas Dewers

Download or read book Shale written by Thomas Dewers and published by John Wiley & Sons. This book was released on 2019-10-02 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in theories, methods and applications for shale resource use Shale is the dominant rock in the sedimentary record. It is also the subject of increased interest because of the growing contribution of shale oil and gas to energy supplies, as well as the potential use of shale formations for carbon dioxide sequestration and nuclear waste storage. Shale: Subsurface Science and Engineering brings together geoscience and engineering to present the latest models, methods and applications for understanding and exploiting shale formations. Volume highlights include: Review of current knowledge on shale geology Latest shale engineering methods such as horizontal drilling Reservoir management practices for optimized oil and gas field development Examples of economically and environmentally viable methods of hydrocarbon extraction from shale Discussion of issues relating to hydraulic fracking, carbon sequestration, and nuclear waste storage Book Review: I. D. Sasowsky, University of Akron, Ohio, September 2020 issue of CHOICE, CHOICE connect, A publication of the Association of College and Research Libraries, A division of the American Library Association, Connecticut, USA Shale has a long history of use as construction fill and a ceramic precursor. In recent years, its potential as a petroleum reservoir has generated renewed interest and intense scientific investigation. Such work has been significantly aided by the development of instrumentation capable of examining and imaging these very fine-grained materials. This timely multliauthor volume brings together 15 studies covering many facets of the related science. The book is presented in two sections: an overview and a second section emphasizing unconventional oil and gas. Topics covered include shale chemistry, metals content, rock mechanics, borehole stability, modeling, and fluid flow, to name only a few. The introductory chapter (24 pages) is useful and extensively referenced. The lead chapter to the second half of the book, "Characterization of Unconventional Resource Shales," provides a notably detailed analysis supporting a comprehensive production workflow. The book is richly illustrated in full color, featuring high-quality images, graphs, and charts. The extensive index provides depth of access to the volume. This work will be of special interest to a diverse group of investigators moving forward with understanding this fascinating group of rocks. Summing Up: Recommended. Upper-division undergraduates through faculty and professionals.

Challenges in Modelling and Simulation of Shale Gas Reservoirs

Download Challenges in Modelling and Simulation of Shale Gas Reservoirs PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319707698
Total Pages : 96 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Challenges in Modelling and Simulation of Shale Gas Reservoirs by : Jebraeel Gholinezhad

Download or read book Challenges in Modelling and Simulation of Shale Gas Reservoirs written by Jebraeel Gholinezhad and published by Springer. This book was released on 2017-12-27 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the problems involved in the modelling and simulation of shale gas reservoirs, and details recent advances in the field. It discusses various modelling and simulation challenges, such as the complexity of fracture networks, adsorption phenomena, non-Darcy flow, and natural fracture networks, presenting the latest findings in these areas. It also discusses the difficulties of developing shale gas models, and compares analytical modelling and numerical simulations of shale gas reservoirs with those of conventional reservoirs. Offering a comprehensive review of the state-of-the-art in developing shale gas models and simulators in the upstream oil industry, it allows readers to gain a better understanding of these reservoirs and encourages more systematic research on efficient exploitation of shale gas plays. It is a valuable resource for researchers interested in the modelling of unconventional reservoirs and graduate students studying reservoir engineering. It is also of interest to practising reservoir and production engineers.

Fluid Transport Through Porous Media

Download Fluid Transport Through Porous Media PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 262 pages
Book Rating : 4.:/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Fluid Transport Through Porous Media by : Maria Apostolopoulou

Download or read book Fluid Transport Through Porous Media written by Maria Apostolopoulou and published by . This book was released on 2019 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: With increasing global energy demands, unconventional formations, such as shale rocks, are becoming an important source of natural gas. Current efforts are focused on understanding fluid dynamics to maximise natural gas yields. Although shale gas is playing an increasingly important role in the global energy industry, our knowledge of the fundamentals of fluid transport through multiscale and heterogeneous porous media is incomplete, as both static and dynamic properties of confined fluids differ tremendously from those at the macroscopic scale. Transport models, derived from atomistic studies, are frequently used to bridge this gap. However, capturing and upscaling the interactions between the pore surface and fluids remains challenging. In this thesis, a computationally efficient stochastic approach is implemented to simulate fluid transport through complex porous media. One-, two-, and three-dimensional kinetic Monte Carlo models were developed to predict methane transport in heterogeneous pore networks consisting of hydrated and water-free micro-, meso-, and macropores, representative of shale rock minerals. Molecular dynamics (MD) simulations, experimental imaging and adsorption data, which describe the surface "†fluid interaction and the pore network features respectively were utilised to inform the KMC models. The stochastic approach was used to (1) quantify the effect of the pore network characteristics (pore size, chemistry, connectivity, porosity, and anisotropy) on the transport of supercritical methane, (2) estimate the permeability of an Eagle Ford shale sample and evaluate the effect of proppants on permeability, and (3) to upscale atomistic insights and predict fluid diffusivity through different size pores. The results obtained were consistent with the analytical solutions of the diffusion equation, experimental data, and MD simulations, respectively, demonstrating the effectiveness of the stochastic approach. In addition, the applicability of less computationally intensive deterministic approaches was examined using multiple case studies; recommendations are provided on the optimal conditions under which each method can be used.

Fundamentals of Gas Shale Reservoirs

Download Fundamentals of Gas Shale Reservoirs PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119039207
Total Pages : 420 pages
Book Rating : 4.1/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Gas Shale Reservoirs by : Reza Rezaee

Download or read book Fundamentals of Gas Shale Reservoirs written by Reza Rezaee and published by John Wiley & Sons. This book was released on 2015-07-01 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides comprehensive information about the key exploration, development and optimization concepts required for gas shale reservoirs Includes statistics about gas shale resources and countries that have shale gas potential Addresses the challenges that oil and gas industries may confront for gas shale reservoir exploration and development Introduces petrophysical analysis, rock physics, geomechanics and passive seismic methods for gas shale plays Details shale gas environmental issues and challenges, economic consideration for gas shale reservoirs Includes case studies of major producing gas shale formations

Advances in Multi-scale Multi-physics Geophysical Modelling and Fluid Transport in Unconventional Oil and Gas Reservoir

Download Advances in Multi-scale Multi-physics Geophysical Modelling and Fluid Transport in Unconventional Oil and Gas Reservoir PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889767752
Total Pages : 155 pages
Book Rating : 4.8/5 (897 download)

DOWNLOAD NOW!


Book Synopsis Advances in Multi-scale Multi-physics Geophysical Modelling and Fluid Transport in Unconventional Oil and Gas Reservoir by : Wenhui Song

Download or read book Advances in Multi-scale Multi-physics Geophysical Modelling and Fluid Transport in Unconventional Oil and Gas Reservoir written by Wenhui Song and published by Frontiers Media SA. This book was released on 2022-08-12 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Pore-scale Modeling and Multi-scale Characterization of Liquid Transport in Shales

Download Pore-scale Modeling and Multi-scale Characterization of Liquid Transport in Shales PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 190 pages
Book Rating : 4.:/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Pore-scale Modeling and Multi-scale Characterization of Liquid Transport in Shales by : Da Zheng

Download or read book Pore-scale Modeling and Multi-scale Characterization of Liquid Transport in Shales written by Da Zheng and published by . This book was released on 2018 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Shale Oil and Gas Handbook

Download Shale Oil and Gas Handbook PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0128021136
Total Pages : 428 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Shale Oil and Gas Handbook by : Sohrab Zendehboudi

Download or read book Shale Oil and Gas Handbook written by Sohrab Zendehboudi and published by Gulf Professional Publishing. This book was released on 2016-11-19 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shale Oil and Gas Handbook: Theory, Technologies, and Challenges provides users with information on how shale oil and gas exploration has revolutionized today’s energy industry. As activity has boomed and job growth continues to increase, training in this area for new and experienced engineers is essential. This book provides comprehensive information on both the engineering design and research aspects of this emerging industry. Covering the full spectrum of basic definitions, characteristics, drilling techniques, and processing and extraction technologies, the book is a great starting point to educate oil and gas personnel on today’s shale industry. Critical topics covered include characterization of shale gas, theory and methods, typical costs, and obstacles for exploration and drilling, R&D and technology development in shale production, EOR methods in shale oil reservoirs, and the current status and impending challenges for shale oil and gas, including the inevitable future prospects relating to worldwide development. Reveals all the basic information needed to quickly understand today’s shale oil and gas industry, including advantages and disadvantages, equipment and costs, flow diagrams, and processing stages Evenly distributes coverage between oil and gas into two parts, as well as upstream and downstream content Provides a practical handbook with real-world case studies and problem examples, including formulas and calculations

Unconventional Shale Gas Development

Download Unconventional Shale Gas Development PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0323905293
Total Pages : 498 pages
Book Rating : 4.3/5 (239 download)

DOWNLOAD NOW!


Book Synopsis Unconventional Shale Gas Development by : Rouzbeh G. Moghanloo

Download or read book Unconventional Shale Gas Development written by Rouzbeh G. Moghanloo and published by Gulf Professional Publishing. This book was released on 2022-02-23 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unconventional Shale Gas Development: Lessons Learned gives engineers the latest research developments and practical applications in today’s operations. Comprised of both academic and corporate contributors, a balanced critical review on technologies utilized are covered. Environmental topics are presented, including produced water management and sustainable operations in gas systems. Machine learning applications, well integrity and economic challenges are also covered to get the engineer up-to-speed. With its critical elements, case studies, history plot visuals and flow charts, the book delivers a critical reference to get today’s petroleum engineers updated on the latest research and applications surrounding shale gas systems. Bridges the gap between the latest research developments and practical applications through case studies and workflow charts Helps readers understand the latest developments from the balanced viewpoint of academic and corporate contributors Considers environmental and sustainable operations in shale gas systems, including produced water management

Multiscale and Multiphysics Flow Simulations of Using the Boltzmann Equation

Download Multiscale and Multiphysics Flow Simulations of Using the Boltzmann Equation PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030264661
Total Pages : 164 pages
Book Rating : 4.0/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Multiscale and Multiphysics Flow Simulations of Using the Boltzmann Equation by : Jun Li

Download or read book Multiscale and Multiphysics Flow Simulations of Using the Boltzmann Equation written by Jun Li and published by Springer Nature. This book was released on 2019-08-28 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the kinetic theory for describing flow problems from molecular scale, hydrodynamic scale, to Darcy scale. The author presents various numerical algorithms to solve the same Boltzmann-like equation for different applications of different scales, in which the dominant transport mechanisms may differ. This book presents a concise introduction to the Boltzmann equation of the kinetic theory, based on which different simulation methods that were independently developed for solving problems of different fields can be naturally related to each other. Then, the advantages and disadvantages of different methods will be discussed with reference to each other. It mainly covers four advanced simulation methods based on the Boltzmann equation (i.e., direct simulation Monte Carlo method, direct simulation BGK method, discrete velocity method, and lattice Boltzmann method) and their applications with detailed results. In particular, many simulations are included to demonstrate the applications for both conventional and unconventional reservoirs. With the development of high-resolution CT and high-performance computing facilities, the study of digital rock physics is becoming increasingly important for understanding the mechanisms of enhanced oil and gas recovery. The advanced methods presented here have broad applications in petroleum engineering as well as mechanical engineering , making them of interest to researchers, professionals, and graduate students alike. At the same time, instructors can use the codes at the end of the book to help their students implement the advanced technology in solving real industrial problems.

Shale

Download Shale PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119066689
Total Pages : 318 pages
Book Rating : 4.1/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Shale by : Thomas Dewers

Download or read book Shale written by Thomas Dewers and published by John Wiley & Sons. This book was released on 2019-10-15 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in theories, methods and applications for shale resource use Shale is the dominant rock in the sedimentary record. It is also the subject of increased interest because of the growing contribution of shale oil and gas to energy supplies, as well as the potential use of shale formations for carbon dioxide sequestration and nuclear waste storage. Shale: Subsurface Science and Engineering brings together geoscience and engineering to present the latest models, methods and applications for understanding and exploiting shale formations. Volume highlights include: Review of current knowledge on shale geology Latest shale engineering methods such as horizontal drilling Reservoir management practices for optimized oil and gas field development Examples of economically and environmentally viable methods of hydrocarbon extraction from shale Discussion of issues relating to hydraulic fracking, carbon sequestration, and nuclear waste storage Book Review: I. D. Sasowsky, University of Akron, Ohio, September 2020 issue of CHOICE, CHOICE connect, A publication of the Association of College and Research Libraries, A division of the American Library Association, Connecticut, USA Shale has a long history of use as construction fill and a ceramic precursor. In recent years, its potential as a petroleum reservoir has generated renewed interest and intense scientific investigation. Such work has been significantly aided by the development of instrumentation capable of examining and imaging these very fine-grained materials. This timely multliauthor volume brings together 15 studies covering many facets of the related science. The book is presented in two sections: an overview and a second section emphasizing unconventional oil and gas. Topics covered include shale chemistry, metals content, rock mechanics, borehole stability, modeling, and fluid flow, to name only a few. The introductory chapter (24 pages) is useful and extensively referenced. The lead chapter to the second half of the book, "Characterization of Unconventional Resource Shales," provides a notably detailed analysis supporting a comprehensive production workflow. The book is richly illustrated in full color, featuring high-quality images, graphs, and charts. The extensive index provides depth of access to the volume. This work will be of special interest to a diverse group of investigators moving forward with understanding this fascinating group of rocks. Summing Up: Recommended. Upper-division undergraduates through faculty and professionals.