Modular Forms and Special Cycles on Shimura Curves. (AM-161)

Download Modular Forms and Special Cycles on Shimura Curves. (AM-161) PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400837162
Total Pages : 384 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Modular Forms and Special Cycles on Shimura Curves. (AM-161) by : Stephen S. Kudla

Download or read book Modular Forms and Special Cycles on Shimura Curves. (AM-161) written by Stephen S. Kudla and published by Princeton University Press. This book was released on 2006-04-04 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soulé arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions.

Modular Forms and Special Cycles on Shimura Curves. (AM-161)

Download Modular Forms and Special Cycles on Shimura Curves. (AM-161) PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691125511
Total Pages : 387 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis Modular Forms and Special Cycles on Shimura Curves. (AM-161) by : Stephen S. Kudla

Download or read book Modular Forms and Special Cycles on Shimura Curves. (AM-161) written by Stephen S. Kudla and published by Princeton University Press. This book was released on 2006-04-24 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soulé arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions.

The Gross-Zagier Formula on Shimura Curves

Download The Gross-Zagier Formula on Shimura Curves PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691155925
Total Pages : 266 pages
Book Rating : 4.6/5 (911 download)

DOWNLOAD NOW!


Book Synopsis The Gross-Zagier Formula on Shimura Curves by : Xinyi Yuan

Download or read book The Gross-Zagier Formula on Shimura Curves written by Xinyi Yuan and published by Princeton University Press. This book was released on 2013 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof of its coherent analogue: the Waldspurger formula, which relates the periods of integrals and the special values of L-series by means of Weil representations. The Gross-Zagier formula is then reformulated in terms of incoherent Weil representations and Kudla's generating series. Using Arakelov theory and the modularity of Kudla's generating series, the proof of the Gross-Zagier formula is reduced to local formulas. The Gross-Zagier Formula on Shimura Curves will be of great use to students wishing to enter this area and to those already working in it.

Intersections of Hirzebruch–Zagier Divisors and CM Cycles

Download Intersections of Hirzebruch–Zagier Divisors and CM Cycles PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642239781
Total Pages : 146 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Intersections of Hirzebruch–Zagier Divisors and CM Cycles by : Benjamin Howard

Download or read book Intersections of Hirzebruch–Zagier Divisors and CM Cycles written by Benjamin Howard and published by Springer Science & Business Media. This book was released on 2012-01-06 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.

The Geometric and Arithmetic Volume of Shimura Varieties of Orthogonal Type

Download The Geometric and Arithmetic Volume of Shimura Varieties of Orthogonal Type PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470419122
Total Pages : 162 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis The Geometric and Arithmetic Volume of Shimura Varieties of Orthogonal Type by : Fritz Hörmann

Download or read book The Geometric and Arithmetic Volume of Shimura Varieties of Orthogonal Type written by Fritz Hörmann and published by American Mathematical Society. This book was released on 2014-11-05 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book outlines a functorial theory of integral models of (mixed) Shimura varieties and of their toroidal compactifications, for odd primes of good reduction. This is the integral version, developed in the author's thesis, of the theory invented by Deligne and Pink in the rational case. In addition, the author develops a theory of arithmetic Chern classes of integral automorphic vector bundles with singular metrics using the work of Burgos, Kramer and Kühn. The main application is calculating arithmetic volumes or "heights" of Shimura varieties of orthogonal type using Borcherds' famous modular forms with their striking product formula--an idea due to Bruinier-Burgos-Kühn and Kudla. This should be seen as an Arakelov analogue of the classical calculation of volumes of orthogonal locally symmetric spaces by Siegel and Weil. In the latter theory, the volumes are related to special values of (normalized) Siegel Eisenstein series. In this book, it is proved that the Arakelov analogues are related to special derivatives of such Eisenstein series. This result gives substantial evidence in the direction of Kudla's conjectures in arbitrary dimensions. The validity of the full set of conjectures of Kudla, in turn, would give a conceptual proof and far-reaching generalizations of the work of Gross and Zagier on the Birch and Swinnerton-Dyer conjecture. Titles in this series are co-published with the Centre de Recherches Mathématiques.

Periods of Quaternionic Shimura Varieties. I.

Download Periods of Quaternionic Shimura Varieties. I. PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470448947
Total Pages : 214 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Periods of Quaternionic Shimura Varieties. I. by : Atsushi Ichino

Download or read book Periods of Quaternionic Shimura Varieties. I. written by Atsushi Ichino and published by American Mathematical Society. This book was released on 2021-02-23 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book formulates a new conjecture about quadratic periods of automorphic forms on quaternion algebras, which is an integral refinement of Shimura's algebraicity conjectures on these periods. It also provides a strategy to attack this conjecture by reformulating it in terms of integrality properties of the theta correspondence for quaternionic unitary groups. The methods and constructions of the book are expected to have applications to other problems related to periods, such as the Bloch-Beilinson conjecture about special values of $L$-functions and constructing geometric realizations of Langlands functoriality for automorphic forms on quaternion algebras.

Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)

Download Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813272899
Total Pages : 5393 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes) by : Boyan Sirakov

Download or read book Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes) written by Boyan Sirakov and published by World Scientific. This book was released on 2019-02-27 with total page 5393 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.

Arithmetic of L-functions

Download Arithmetic of L-functions PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821886983
Total Pages : 517 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Arithmetic of L-functions by : Cristian Popescu

Download or read book Arithmetic of L-functions written by Cristian Popescu and published by American Mathematical Soc.. This book was released on with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Automorphic Forms and $L$-functions I

Download Automorphic Forms and $L$-functions I PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821847066
Total Pages : 315 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Automorphic Forms and $L$-functions I by : David Ginzburg

Download or read book Automorphic Forms and $L$-functions I written by David Ginzburg and published by American Mathematical Soc.. This book was released on 2009 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes articles that represent global aspects of automorphic forms. This book covers topics such as: the trace formula; functoriality; representations of reductive groups over local fields; the relative trace formula and periods of automorphic forms; Rankin - Selberg convolutions and L-functions; and, p-adic L-functions.

Arithmetic Groups and Their Generalizations

Download Arithmetic Groups and Their Generalizations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821848666
Total Pages : 282 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Arithmetic Groups and Their Generalizations by : Lizhen Ji

Download or read book Arithmetic Groups and Their Generalizations written by Lizhen Ji and published by American Mathematical Soc.. This book was released on 2008 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: In one guise or another, many mathematicians are familiar with certain arithmetic groups, such as $\mathbf{Z}$ or $\textrm{SL}(n, \mathbf{Z})$. Yet, many applications of arithmetic groups and many connections to other subjects within mathematics are less well known. Indeed, arithmetic groups admit many natural and important generalizations. The purpose of this expository book is to explain, through some brief and informal comments and extensive references, what arithmetic groups and their generalizations are, why they are important to study, and how they can be understood and applied to many fields, such as analysis, geometry, topology, number theory, representation theory, and algebraic geometry. It is hoped that such an overview will shed a light on the important role played by arithmetic groups in modern mathematics. Titles in this series are co-published with International Press, Cambridge, MA.Table of Contents: Introduction; General comments on references; Examples of basic arithmetic groups; General arithmetic subgroups and locally symmetric spaces; Discrete subgroups of Lie groups and arithmeticity of lattices in Lie groups; Different completions of $\mathbb{Q}$ and $S$-arithmetic groups over number fields; Global fields and $S$-arithmetic groups over function fields; Finiteness properties of arithmetic and $S$-arithmetic groups; Symmetric spaces, Bruhat-Tits buildings and their arithmetic quotients; Compactifications of locally symmetric spaces; Rigidity of locally symmetric spaces; Automorphic forms and automorphic representations for general arithmetic groups; Cohomology of arithmetic groups; $K$-groups of rings of integers and $K$-groups of group rings; Locally homogeneous manifolds and period domains; Non-cofinite discrete groups, geometrically finite groups; Large scale geometry of discrete groups; Tree lattices; Hyperbolic groups; Mapping class groups and outer automorphism groups of free groups; Outer automorphism group of free groups and the outer spaces; References; Index. Review from Mathematical Reviews: ...the author deserves credit for having done the tremendous job of encompassing every aspect of arithmetic groups visible in today's mathematics in a systematic manner; the book should be an important guide for some time to come.(AMSIP/43.

Recent Advances in Hodge Theory

Download Recent Advances in Hodge Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316531392
Total Pages : 533 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Hodge Theory by : Matt Kerr

Download or read book Recent Advances in Hodge Theory written by Matt Kerr and published by Cambridge University Press. This book was released on 2016-02-04 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: In its simplest form, Hodge theory is the study of periods – integrals of algebraic differential forms which arise in the study of complex geometry and moduli, number theory and physics. Organized around the basic concepts of variations of Hodge structure and period maps, this volume draws together new developments in deformation theory, mirror symmetry, Galois representations, iterated integrals, algebraic cycles and the Hodge conjecture. Its mixture of high-quality expository and research articles make it a useful resource for graduate students and seasoned researchers alike.

Motives and Algebraic Cycles

Download Motives and Algebraic Cycles PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821844946
Total Pages : 354 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Motives and Algebraic Cycles by : Rob de Jeu

Download or read book Motives and Algebraic Cycles written by Rob de Jeu and published by American Mathematical Soc.. This book was released on 2009 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spencer J. Bloch has, and continues to have, a profound influence on the subject of Algebraic $K$-Theory, Cycles and Motives. This book, which is comprised of a number of independent research articles written by leading experts in the field, is dedicated in his honour, and gives a snapshot of the current and evolving nature of the subject. Some of the articles are written in an expository style, providing a perspective on the current state of the subject to those wishing to learn more about it. Others are more technical, representing new developments and making them especially interesting to researchers for keeping abreast of recent progress.

Analytic Number Theory

Download Analytic Number Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821843079
Total Pages : 270 pages
Book Rating : 4.8/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Analytic Number Theory by : William Duke

Download or read book Analytic Number Theory written by William Duke and published by American Mathematical Soc.. This book was released on 2007 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Articles in this volume are based on talks given at the Gauss-Dirichlet Conference held in Gottingen on June 20-24, 2005. The conference commemorated the 150th anniversary of the death of C.-F. Gauss and the 200th anniversary of the birth of J.-L. Dirichlet. The volume begins with a definitive summary of the life and work of Dirichlet and continues with thirteen papers by leading experts on research topics of current interest in number theory that were directly influenced by Gauss and Dirichlet. Among the topics are the distribution of primes (long arithmetic progressions of primes and small gaps between primes), class groups of binary quadratic forms, various aspects of the theory of $L$-functions, the theory of modular forms, and the study of rational and integral solutions to polynomial equations in several variables. Information for our distributors: Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).

Arakelov Geometry and Diophantine Applications

Download Arakelov Geometry and Diophantine Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030575594
Total Pages : 469 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Arakelov Geometry and Diophantine Applications by : Emmanuel Peyre

Download or read book Arakelov Geometry and Diophantine Applications written by Emmanuel Peyre and published by Springer Nature. This book was released on 2021-03-10 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.

Modular Forms, a Computational Approach

Download Modular Forms, a Computational Approach PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821839608
Total Pages : 290 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Modular Forms, a Computational Approach by : William A. Stein

Download or read book Modular Forms, a Computational Approach written by William A. Stein and published by American Mathematical Soc.. This book was released on 2007-02-13 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.

Rational Points on Modular Elliptic Curves

Download Rational Points on Modular Elliptic Curves PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821828681
Total Pages : 146 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Rational Points on Modular Elliptic Curves by : Henri Darmon

Download or read book Rational Points on Modular Elliptic Curves written by Henri Darmon and published by American Mathematical Soc.. This book was released on 2004 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.

Higher Topos Theory (AM-170)

Download Higher Topos Theory (AM-170) PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 9780691140490
Total Pages : 948 pages
Book Rating : 4.1/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Higher Topos Theory (AM-170) by : Jacob Lurie

Download or read book Higher Topos Theory (AM-170) written by Jacob Lurie and published by Princeton University Press. This book was released on 2009-07-26 with total page 948 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 'Higher Topos Theory', Jacob Lurie presents the foundations of this theory using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language.