Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Modular Calabi Yau Threefolds
Download Modular Calabi Yau Threefolds full books in PDF, epub, and Kindle. Read online Modular Calabi Yau Threefolds ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Modular Calabi-Yau Threefolds by : Christian Meyer
Download or read book Modular Calabi-Yau Threefolds written by Christian Meyer and published by American Mathematical Soc.. This book was released on 2005 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The main subject of this book is the connection between Calabi-Yau threefolds and modular forms. The book presents the general theory and brings together the known results. It studies hundreds of new examples of rigid and non-rigid modular Calabi-Yau threefolds and correspondences between them. Conjectures about the possible levels of modular forms connected with Calabi-Yau threefolds are presented. Tables of newforms of weight four and large levels are compiled and included in the appendix."--Jaquette.
Book Synopsis Calabi-Yau Varieties and Mirror Symmetry by : Noriko Yui
Download or read book Calabi-Yau Varieties and Mirror Symmetry written by Noriko Yui and published by American Mathematical Soc.. This book was released on 2003 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of mirror symmetry originated in physics, but in recent years, the field of mirror symmetry has exploded onto the mathematical scene. It has inspired many new developments in algebraic and arithmetic geometry, toric geometry, the theory of Riemann surfaces, and infinite-dimensional Lie algebras among others. The developments in physics stimulated the interest of mathematicians in Calabi-Yau varieties. This led to the realization that the time is ripe for mathematicians, armed with many concrete examples and alerted by the mirror symmetry phenomenon, to focus on Calabi-Yau varieties and to test for these special varieties some of the great outstanding conjectures, e.g., the modularity conjecture for Calabi-Yau threefolds defined over the rationals, the Bloch-Beilinson conjectures, regulator maps of higher algebraic cycles, Picard-Fuchs differential equations, GKZ hypergeometric systems, and others. The articles in this volume report on current developments. The papers are divided roughly into two categories: geometric methods and arithmetic methods. One of the significant outcomes of the workshop is that we are finally beginning to understand the mirror symmetry phenomenon from the arithmetic point of view, namely, in terms of zeta-functions and L-series of mirror pairs of Calabi-Yau threefolds. The book is suitable for researchers interested in mirror symmetry and string theory.
Book Synopsis Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds by : Radu Laza
Download or read book Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds written by Radu Laza and published by Springer Science & Business Media. This book was released on 2013-06-12 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, research in K3 surfaces and Calabi–Yau varieties has seen spectacular progress from both arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics—in particular, in string theory. The workshop on Arithmetic and Geometry of K3 surfaces and Calabi–Yau threefolds, held at the Fields Institute (August 16-25, 2011), aimed to give a state-of-the-art survey of these new developments. This proceedings volume includes a representative sampling of the broad range of topics covered by the workshop. While the subjects range from arithmetic geometry through algebraic geometry and differential geometry to mathematical physics, the papers are naturally related by the common theme of Calabi–Yau varieties. With the big variety of branches of mathematics and mathematical physics touched upon, this area reveals many deep connections between subjects previously considered unrelated. Unlike most other conferences, the 2011 Calabi–Yau workshop started with 3 days of introductory lectures. A selection of 4 of these lectures is included in this volume. These lectures can be used as a starting point for the graduate students and other junior researchers, or as a guide to the subject.
Book Synopsis Arithmetic Algebraic Geometry by : Brian David Conrad
Download or read book Arithmetic Algebraic Geometry written by Brian David Conrad and published by American Mathematical Soc.. This book was released on with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this volume are expanded versions of lectures delivered at the Graduate Summer School and at the Mentoring Program for Women in Mathematics held at the Institute for Advanced Study/Park City Mathematics Institute. The theme of the program was arithmetic algebraic geometry. The choice of lecture topics was heavily influenced by the recent spectacular work of Wiles on modular elliptic curves and Fermat's Last Theorem. The main emphasis of the articles in the volume is on elliptic curves, Galois representations, and modular forms. One lecture series offers an introduction to these objects. The others discuss selected recent results, current research, and open problems and conjectures. The book would be a suitable text for an advanced graduate topics course in arithmetic algebraic geometry.
Author :Noriko Yui, Helena Verrill, and Charles F. Doran Publisher :American Mathematical Soc. ISBN 13 :9780821871577 Total Pages :324 pages Book Rating :4.8/5 (715 download)
Book Synopsis Modular Forms and String Duality by : Noriko Yui, Helena Verrill, and Charles F. Doran
Download or read book Modular Forms and String Duality written by Noriko Yui, Helena Verrill, and Charles F. Doran and published by American Mathematical Soc.. This book was released on with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is a testimony to the BIRS Workshop, and it covers a wide range of topics at the interface of number theory and string theory, with special emphasis on modular forms and string duality. They include the recent advances as well as introductory expositions on various aspects of modular forms, motives, differential equations, conformal field theory, topological strings and Gromov-Witten invariants, mirror symmetry, and homological mirror symmetry. The contributions are roughly divided into three categories: arithmetic and modular forms, geometric and differential equations, and physics and string theory. The book is suitable for researchers working at the interface of number theory and string theory."--BOOK JACKET.
Book Synopsis Modular Forms and String Duality by : Noriko Yui
Download or read book Modular Forms and String Duality written by Noriko Yui and published by American Mathematical Soc.. This book was released on 2008 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is a testimony to the BIRS Workshop, and it covers a wide range of topics at the interface of number theory and string theory, with special emphasis on modular forms and string duality. They include the recent advances as well as introductory expositions on various aspects of modular forms, motives, differential equations, conformal field theory, topological strings and Gromov-Witten invariants, mirror symmetry, and homological mirror symmetry. The contributions are roughly divided into three categories: arithmetic and modular forms, geometric and differential equations, and physics and string theory. The book is suitable for researchers working at the interface of number theory and string theory."--BOOK JACKET.
Book Synopsis Global Aspects of Complex Geometry by : Fabrizio Catanese
Download or read book Global Aspects of Complex Geometry written by Fabrizio Catanese and published by Springer Science & Business Media. This book was released on 2006-09-29 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of surveys present an overview of recent developments in Complex Geometry. Topics range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kähler geometry, and group actions to Hodge theory and characteristic p-geometry. Written by established experts this book will be a must for mathematicians working in Complex Geometry
Book Synopsis The Modularity of a Certain Calabi-Yau Threefold and Supercongruences for Truncated Hypergeometric Series by : Eric Todd Mortenson
Download or read book The Modularity of a Certain Calabi-Yau Threefold and Supercongruences for Truncated Hypergeometric Series written by Eric Todd Mortenson and published by . This book was released on 2003 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Mathematisches Institut Georg-august-universität Göttingen, Seminars Summer Term 2004 by : Yuri Tschinkel
Download or read book Mathematisches Institut Georg-august-universität Göttingen, Seminars Summer Term 2004 written by Yuri Tschinkel and published by Universitätsverlag Göttingen. This book was released on 2004 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains lecture notes from the seminars [alpha]Number Theory", [alpha]Algebraic Geometry" and [alpha]Geometric methods in representation theory" which took place at the Mathematics Institute of the University of Göttingen during the Summer Term 2004. Most contributions report on recent work by the authors.
Book Synopsis Arithmetic and Geometry by : Luis Dieulefait
Download or read book Arithmetic and Geometry written by Luis Dieulefait and published by Cambridge University Press. This book was released on 2015-10-08 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 'Arithmetic and Geometry' trimester, held at the Hausdorff Research Institute for Mathematics in Bonn, focussed on recent work on Serre's conjecture and on rational points on algebraic varieties. The resulting proceedings volume provides a modern overview of the subject for graduate students in arithmetic geometry and Diophantine geometry. It is also essential reading for any researcher wishing to keep abreast of the latest developments in the field. Highlights include Tim Browning's survey on applications of the circle method to rational points on algebraic varieties and Per Salberger's chapter on rational points on cubic hypersurfaces.
Book Synopsis The Arithmetic and Geometry of Algebraic Cycles by : B. Brent Gordon
Download or read book The Arithmetic and Geometry of Algebraic Cycles written by B. Brent Gordon and published by Springer Science & Business Media. This book was released on 2000-02-29 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of algebraic cycles has thrived through its interaction with algebraic K-theory, Hodge theory, arithmetic algebraic geometry, number theory, and topology. These interactions have led to such developments as a description of Chow groups in terms of algebraic K-theory, the arithmetic Abel-Jacobi mapping, progress on the celebrated conjectures of Hodge and Tate, and the conjectures of Bloch and Beilinson. The immense recent progress in algebraic cycles, based on so many interactions with so many other areas of mathematics, has contributed to a considerable degree of inaccessibility, especially for graduate students. Even specialists in one approach to algebraic cycles may not understand other approaches well. This book offers students and specialists alike a broad perspective of algebraic cycles, presented from several viewpoints, including arithmetic, transcendental, topological, motives and K-theory methods. Topics include a discussion of the arithmetic Abel-Jacobi mapping, higher Abel-Jacobi regulator maps, polylogarithms and L-series, candidate Bloch-Beilinson filtrations, applications of Chern-Simons invariants to algebraic cycles via the study of algebraic vector bundles with algebraic connection, motivic cohomology, Chow groups of singular varieties, and recent progress on the Hodge and Tate conjectures for Abelian varieties.
Download or read book 2017 MATRIX Annals written by Jan de Gier and published by Springer. This book was released on 2019-03-13 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the eight programs held at MATRIX in its second year, 2017: - Hypergeometric Motives and Calabi–Yau Differential Equations - Computational Inverse Problems - Integrability in Low-Dimensional Quantum Systems - Elliptic Partial Differential Equations of Second Order: Celebrating 40 Years of Gilbarg and Trudinger’s Book - Combinatorics, Statistical Mechanics, and Conformal Field Theory - Mathematics of Risk - Tutte Centenary Retreat - Geometric R-Matrices: from Geometry to Probability The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
Download or read book String-Math 2015 written by Si Li and published by American Mathematical Soc.. This book was released on 2017-11-28 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the conference String-Math 2015, which was held from December 31, 2015–January 4, 2016, at Tsinghua Sanya International Mathematics Forum in Sanya, China. Two of the main themes of this volume are frontier research on Calabi-Yau manifolds and mirror symmetry and the development of non-perturbative methods in supersymmetric gauge theories. The articles present state-of-the-art developments in these topics. String theory is a broad subject, which has profound connections with broad branches of modern mathematics. In the last decades, the prosperous interaction built upon the joint efforts from both mathematicians and physicists has given rise to marvelous deep results in supersymmetric gauge theory, topological string, M-theory and duality on the physics side, as well as in algebraic geometry, differential geometry, algebraic topology, representation theory and number theory on the mathematics side.
Book Synopsis Recent Advances in Hodge Theory by : Matt Kerr
Download or read book Recent Advances in Hodge Theory written by Matt Kerr and published by Cambridge University Press. This book was released on 2016-02-04 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combines cutting-edge research and expository articles in Hodge theory. An essential reference for graduate students and researchers.
Book Synopsis Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry by : Sergey Novikov
Download or read book Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry written by Sergey Novikov and published by American Mathematical Soc.. This book was released on 2021-04-12 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
Book Synopsis The 1-2-3 of Modular Forms by : Jan Hendrik Bruinier
Download or read book The 1-2-3 of Modular Forms written by Jan Hendrik Bruinier and published by Springer Science & Business Media. This book was released on 2008-02-10 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.
Book Synopsis Hessian Polyhedra, Invariant Theory And Appell Hypergeometric Functions by : Lei Yang
Download or read book Hessian Polyhedra, Invariant Theory And Appell Hypergeometric Functions written by Lei Yang and published by World Scientific. This book was released on 2018-03-13 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our book gives the complex counterpart of Klein's classic book on the icosahedron. We show that the following four apparently disjoint theories: the symmetries of the Hessian polyhedra (geometry), the resolution of some system of algebraic equations (algebra), the system of partial differential equations of Appell hypergeometric functions (analysis) and the modular equation of Picard modular functions (arithmetic) are in fact dominated by the structure of a single object, the Hessian group $mathfrak{G}’_{216}$. It provides another beautiful example on the fundamental unity of mathematics.