Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Modern Mathematicians
Download Modern Mathematicians full books in PDF, epub, and Kindle. Read online Modern Mathematicians ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Concepts of Modern Mathematics by : Ian Stewart
Download or read book Concepts of Modern Mathematics written by Ian Stewart and published by Courier Corporation. This book was released on 2012-05-23 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts of groups, sets, subsets, topology, Boolean algebra, and other mathematical subjects. 200 illustrations.
Book Synopsis Mathematical Achievements of Pre-modern Indian Mathematicians by : T.K Puttaswamy
Download or read book Mathematical Achievements of Pre-modern Indian Mathematicians written by T.K Puttaswamy and published by Newnes. This book was released on 2012-10-22 with total page 768 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics in India has a long and impressive history. Presented in chronological order, this book discusses mathematical contributions of Pre-Modern Indian Mathematicians from the Vedic period (800 B.C.) to the 17th Century of the Christian era. These contributions range across the fields of Algebra, Geometry and Trigonometry. The book presents the discussions in a chronological order, covering all the contributions of one Pre-Modern Indian Mathematician to the next. It begins with an overview and summary of previous work done on this subject before exploring specific contributions in exemplary technical detail. This book provides a comprehensive examination of pre-Modern Indian mathematical contributions that will be valuable to mathematicians and mathematical historians. - Contains more than 160 original Sanskrit verses with English translations giving historical context to the contributions - Presents the various proofs step by step to help readers understand - Uses modern, current notations and symbols to develop the calculations and proofs
Download or read book Mirror Symmetry written by Kentaro Hori and published by American Mathematical Soc.. This book was released on 2003 with total page 954 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.
Download or read book Modern Algebra written by Seth Warner and published by Courier Corporation. This book was released on 2012-08-29 with total page 852 pages. Available in PDF, EPUB and Kindle. Book excerpt: Standard text provides an exceptionally comprehensive treatment of every aspect of modern algebra. Explores algebraic structures, rings and fields, vector spaces, polynomials, linear operators, much more. Over 1,300 exercises. 1965 edition.
Book Synopsis Modern Mathematics for the Engineer: First Series by : Edwin F. Beckenbach
Download or read book Modern Mathematics for the Engineer: First Series written by Edwin F. Beckenbach and published by Courier Corporation. This book was released on 2013-01-01 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume and its successor were conceived to advance the level of mathematical sophistication in the engineering community, focusing on material relevant to solving the kinds of problems regularly confronted. Volume One's three-part treatment covers mathematical models, probabilistic problems, and computational considerations. Contributors include Solomon Lefschetz, Richard Courant, and Norbert Wiener. 1956 edition.
Book Synopsis Elements of Modern Mathematics by : Kenneth O, May
Download or read book Elements of Modern Mathematics written by Kenneth O, May and published by Dover Publications. This book was released on 2019-11-13 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: An unusually thoughtful and well-constructed introduction to the serious study of mathematics, this book requires no background beyond high school courses in plane geometry and elementary algebra. From that starting point, it is designed to lead readers willing to work through its exercises and problems to the achievement of basic mathematical literacy. The text provides a fundamental orientation in modern mathematics, an essential vocabulary of mathematical terms, and some facility in the use of mathematical concepts and symbols. From there, readers will be equipped to move on to more serious work, and they'll be well on the way to having the tools essential for work in the physical sciences, engineering, and the biological and social sciences. Starting with elementary treatments of algebra, logic, and set theory, the book advances to explorations of plane analytic geometry, relations and functions, numbers, and calculus. Subsequent chapters discuss probability, statistical inference, and abstract mathematical theories. Each section is enhanced with exercises in the text and problems at the end. Answers to the exercises and some of the problems are included at the end of each section.
Book Synopsis Physics for Mathematicians by : Michael Spivak
Download or read book Physics for Mathematicians written by Michael Spivak and published by . This book was released on 2010 with total page 733 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis An Introduction to Modern Mathematical Computing by : Jonathan M. Borwein
Download or read book An Introduction to Modern Mathematical Computing written by Jonathan M. Borwein and published by Springer Science & Business Media. This book was released on 2012-08-07 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thirty years ago mathematical, as opposed to applied numerical, computation was difficult to perform and so relatively little used. Three threads changed that: the emergence of the personal computer; the discovery of fiber-optics and the consequent development of the modern internet; and the building of the Three “M’s” Maple, Mathematica and Matlab. We intend to persuade that Mathematica and other similar tools are worth knowing, assuming only that one wishes to be a mathematician, a mathematics educator, a computer scientist, an engineer or scientist, or anyone else who wishes/needs to use mathematics better. We also hope to explain how to become an "experimental mathematician" while learning to be better at proving things. To accomplish this our material is divided into three main chapters followed by a postscript. These cover elementary number theory, calculus of one and several variables, introductory linear algebra, and visualization and interactive geometric computation.
Book Synopsis Modern Mathematics in the Light of the Fields Medals by : Michael Monastyrsky
Download or read book Modern Mathematics in the Light of the Fields Medals written by Michael Monastyrsky and published by A K Peters/CRC Press. This book was released on 1997-01-15 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This small book demonstrates the evolution of certain areas of modern mathematics by examining the work of past winners of the Fields Medal, the "Nobel Prize" of mathematics. Foreword by Freeman Dyson.
Book Synopsis A Course of Modern Analysis by : E.T. Whittaker
Download or read book A Course of Modern Analysis written by E.T. Whittaker and published by Courier Dover Publications. This book was released on 2020-07-15 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Historic text by two great mathematicians consists of two parts, The Processes of Analysis and The Transcendental Functions. Geared toward students of analysis and historians of mathematics. 1920 third edition.
Book Synopsis Great Ideas of Modern Mathematics, Their Nature and Use by : Jagjit Singh
Download or read book Great Ideas of Modern Mathematics, Their Nature and Use written by Jagjit Singh and published by Courier Dover Publications. This book was released on 1959 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: An explanation of the development and structure of the modern mathematics used in contemporary science
Book Synopsis The Architecture of Modern Mathematics by : J. Ferreiros
Download or read book The Architecture of Modern Mathematics written by J. Ferreiros and published by OUP Oxford. This book was released on 2006-04-27 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume, aimed at both students and researchers in philosophy, mathematics and history of science, highlights leading developments in the overlapping areas of philosophy and the history of modern mathematics. It is a coherent, wide ranging account of how a number of topics in the philosophy of mathematics must be reconsidered in the light of the latest historical research, and how a number of historical accounts can be deepened by embracing philosophical questions.
Book Synopsis Mathematical People by : Donald Albers
Download or read book Mathematical People written by Donald Albers and published by CRC Press. This book was released on 2008-09-18 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique collection contains extensive and in-depth interviews with mathematicians who have shaped the field of mathematics in the twentieth century. Collected by two mathematicians respected in the community for their skill in communicating mathematical topics to a broader audience, the book is also rich with photographs and includes an introdu
Book Synopsis The Mathematical Tourist by : Ivars Peterson
Download or read book The Mathematical Tourist written by Ivars Peterson and published by Macmillan. This book was released on 1998-04-15 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the first edition of The Mathematical Tourist, renowned science journalist Ivars Peterson took readers on an unforgettable tour through the sometimes bizarre, but always fascinating, landscape of modern mathematics. Now the journey continues in a new, updated edition that includes all the latest information on mathematical proofs, fractals, prime numbers, and chaos, as well as new material on * the relationship between mathematical knots and DNA * how computers based on quantum logic can significantly speed up the factoring of large composite numbers * the relationship between four-dimensional geometry and physical theories of the nature of matter * the application of cellular automata models to social questions and the peregrinations of virtual ants * a novel mathematical model of quasicrystals based on decagon-shaped tiles Blazing a trail through rows of austere symbols and dense lines of formulae, Peterson explores the central ideas behind the work of professional mathematicians-- how and where their pieces of the mathematical puzzle fit in, the sources of their ideas, their fountains of inspiration, and the images that carry them from one discovery to another.
Book Synopsis A History of Algebraic and Differential Topology, 1900 - 1960 by : Jean Dieudonné
Download or read book A History of Algebraic and Differential Topology, 1900 - 1960 written by Jean Dieudonné and published by Springer Science & Business Media. This book was released on 2009-09-01 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a well-informed and detailed analysis of the problems and development of algebraic topology, from Poincaré and Brouwer to Serre, Adams, and Thom. The author has examined each significant paper along this route and describes the steps and strategy of its proofs and its relation to other work. Previously, the history of the many technical developments of 20th-century mathematics had seemed to present insuperable obstacles to scholarship. This book demonstrates in the case of topology how these obstacles can be overcome, with enlightening results.... Within its chosen boundaries the coverage of this book is superb. Read it! —MathSciNet
Book Synopsis Ancient and Modern Mathematics by : Dat Phung To
Download or read book Ancient and Modern Mathematics written by Dat Phung To and published by Trafford Publishing. This book was released on 2012-08 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover modern solutions to ancient mathematical problems with this engaging guide, written by a mathematics enthusiast originally from South Vietnam. Author Dat Phung To provides a theory that defines the partial permutations as the compositions of the permutations nPn=n!. To help you apply it, he looks back at the ancient mathematicians who solved challenging problems. Unlike people today, the scholars who lived in the ancient world didn?t have calculators and computers to help answer complicated questions. Even so, they still achieved great works, and their methods continue to hold relevance. In this textbook, you?ll find fourteen ancient problems along with their solutions. The problems are arranged from easiest to toughest, so you can focus on building your knowledge as you progress through the text. Fourteen Ancient Problems also explores partial permutations theory, a mathematical discovery that has many applications. It provides a specific and unique method to write down the whole expansion of nPn = n! into single permutations with n being a finite number. Take a thrilling journey throughout the ancient world, discover an important theory, and build upon your knowledge of mathematics with Fourteen Ancient Problems.
Book Synopsis Seki, Founder of Modern Mathematics in Japan by : Eberhard Knobloch
Download or read book Seki, Founder of Modern Mathematics in Japan written by Eberhard Knobloch and published by Springer Science & Business Media. This book was released on 2013-11-13 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seki was a Japanese mathematician in the seventeenth century known for his outstanding achievements, including the elimination theory of systems of algebraic equations, which preceded the works of Étienne Bézout and Leonhard Euler by 80 years. Seki was a contemporary of Isaac Newton and Gottfried Wilhelm Leibniz, although there was apparently no direct interaction between them. The Mathematical Society of Japan and the History of Mathematics Society of Japan hosted the International Conference on History of Mathematics in Commemoration of the 300th Posthumous Anniversary of Seki in 2008. This book is the official record of the conference and includes supplements of collated texts of Seki's original writings with notes in English on these texts. Hikosaburo Komatsu (Professor emeritus, The University of Tokyo), one of the editors, is known for partial differential equations and hyperfunction theory, and for his study on the history of Japanese mathematics. He served as the President of the International Congress of Mathematicians Kyoto 1990.