Introduction to Random Matrices

Download Introduction to Random Matrices PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319708856
Total Pages : 122 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Random Matrices by : Giacomo Livan

Download or read book Introduction to Random Matrices written by Giacomo Livan and published by Springer. This book was released on 2018-01-16 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern developments of Random Matrix Theory as well as pedagogical approaches to the standard core of the discipline are surprisingly hard to find in a well-organized, readable and user-friendly fashion. This slim and agile book, written in a pedagogical and hands-on style, without sacrificing formal rigor fills this gap. It brings Ph.D. students in Physics, as well as more senior practitioners, through the standard tools and results on random matrices, with an eye on most recent developments that are not usually covered in introductory texts. The focus is mainly on random matrices with real spectrum.The main guiding threads throughout the book are the Gaussian Ensembles. In particular, Wigner’s semicircle law is derived multiple times to illustrate several techniques (e.g., Coulomb gas approach, replica theory).Most chapters are accompanied by Matlab codes (stored in an online repository) to guide readers through the numerical check of most analytical results.

A First Course in Random Matrix Theory

Download A First Course in Random Matrix Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108488080
Total Pages : 371 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Random Matrix Theory by : Marc Potters

Download or read book A First Course in Random Matrix Theory written by Marc Potters and published by Cambridge University Press. This book was released on 2020-12-03 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.

Modern Aspects of Random Matrix Theory

Download Modern Aspects of Random Matrix Theory PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 0821894714
Total Pages : 186 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Modern Aspects of Random Matrix Theory by : Van H. Vu

Download or read book Modern Aspects of Random Matrix Theory written by Van H. Vu and published by American Mathematical Society. This book was released on 2014-07-16 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of random matrices is an amazingly rich topic in mathematics. Random matrices play a fundamental role in various areas such as statistics, mathematical physics, combinatorics, theoretical computer science, number theory and numerical analysis. This volume is based on lectures delivered at the 2013 AMS Short Course on Random Matrices, held January 6-7, 2013 in San Diego, California. Included are surveys by leading researchers in the field, written in introductory style, aiming to provide the reader a quick and intuitive overview of this fascinating and rapidly developing topic. These surveys contain many major recent developments, such as progress on universality conjectures, connections between random matrices and free probability, numerical algebra, combinatorics and high-dimensional geometry, together with several novel methods and a variety of open questions.

Topics in Random Matrix Theory

Download Topics in Random Matrix Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821874306
Total Pages : 298 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Topics in Random Matrix Theory by : Terence Tao

Download or read book Topics in Random Matrix Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2012-03-21 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as iid matrix ensembles. The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.

An Introduction to Random Matrices

Download An Introduction to Random Matrices PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521194520
Total Pages : 507 pages
Book Rating : 4.5/5 (211 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Random Matrices by : Greg W. Anderson

Download or read book An Introduction to Random Matrices written by Greg W. Anderson and published by Cambridge University Press. This book was released on 2010 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous introduction to the basic theory of random matrices designed for graduate students with a background in probability theory.

Random Matrices, Frobenius Eigenvalues, and Monodromy

Download Random Matrices, Frobenius Eigenvalues, and Monodromy PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470475073
Total Pages : 441 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Random Matrices, Frobenius Eigenvalues, and Monodromy by : Nicholas M. Katz

Download or read book Random Matrices, Frobenius Eigenvalues, and Monodromy written by Nicholas M. Katz and published by American Mathematical Society. This book was released on 2023-11-13 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main topic of this book is the deep relation between the spacings between zeros of zeta and $L$-functions and spacings between eigenvalues of random elements of large compact classical groups. This relation, the Montgomery-Odlyzko law, is shown to hold for wide classes of zeta and $L$-functions over finite fields. The book draws on and gives accessible accounts of many disparate areas of mathematics, from algebraic geometry, moduli spaces, monodromy, equidistribution, and the Weil conjectures, to probability theory on the compact classical groups in the limit as their dimension goes to infinity and related techniques from orthogonal polynomials and Fredholm determinants.

An Invitation to Modern Number Theory

Download An Invitation to Modern Number Theory PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691215979
Total Pages : 526 pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis An Invitation to Modern Number Theory by : Steven J. Miller

Download or read book An Invitation to Modern Number Theory written by Steven J. Miller and published by Princeton University Press. This book was released on 2020-07-21 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a manner accessible to beginning undergraduates, An Invitation to Modern Number Theory introduces many of the central problems, conjectures, results, and techniques of the field, such as the Riemann Hypothesis, Roth's Theorem, the Circle Method, and Random Matrix Theory. Showing how experiments are used to test conjectures and prove theorems, the book allows students to do original work on such problems, often using little more than calculus (though there are numerous remarks for those with deeper backgrounds). It shows students what number theory theorems are used for and what led to them and suggests problems for further research. Steven Miller and Ramin Takloo-Bighash introduce the problems and the computational skills required to numerically investigate them, providing background material (from probability to statistics to Fourier analysis) whenever necessary. They guide students through a variety of problems, ranging from basic number theory, cryptography, and Goldbach's Problem, to the algebraic structures of numbers and continued fractions, showing connections between these subjects and encouraging students to study them further. In addition, this is the first undergraduate book to explore Random Matrix Theory, which has recently become a powerful tool for predicting answers in number theory. Providing exercises, references to the background literature, and Web links to previous student research projects, An Invitation to Modern Number Theory can be used to teach a research seminar or a lecture class.

The Random Matrix Theory of the Classical Compact Groups

Download The Random Matrix Theory of the Classical Compact Groups PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108317995
Total Pages : 225 pages
Book Rating : 4.1/5 (83 download)

DOWNLOAD NOW!


Book Synopsis The Random Matrix Theory of the Classical Compact Groups by : Elizabeth S. Meckes

Download or read book The Random Matrix Theory of the Classical Compact Groups written by Elizabeth S. Meckes and published by Cambridge University Press. This book was released on 2019-08-01 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to provide a comprehensive overview of foundational results and recent progress in the study of random matrices from the classical compact groups, drawing on the subject's deep connections to geometry, analysis, algebra, physics, and statistics. The book sets a foundation with an introduction to the groups themselves and six different constructions of Haar measure. Classical and recent results are then presented in a digested, accessible form, including the following: results on the joint distributions of the entries; an extensive treatment of eigenvalue distributions, including the Weyl integration formula, moment formulae, and limit theorems and large deviations for the spectral measures; concentration of measure with applications both within random matrix theory and in high dimensional geometry; and results on characteristic polynomials with connections to the Riemann zeta function. This book will be a useful reference for researchers and an accessible introduction for students in related fields.

The Oxford Handbook of Random Matrix Theory

Download The Oxford Handbook of Random Matrix Theory PDF Online Free

Author :
Publisher : Oxford Handbooks
ISBN 13 : 9780198744191
Total Pages : 0 pages
Book Rating : 4.7/5 (441 download)

DOWNLOAD NOW!


Book Synopsis The Oxford Handbook of Random Matrix Theory by : Gernot Akemann

Download or read book The Oxford Handbook of Random Matrix Theory written by Gernot Akemann and published by Oxford Handbooks. This book was released on 2015-08-09 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a foreword by Freeman Dyson, the handbook brings together leading mathematicians and physicists to offer a comprehensive overview of random matrix theory, including a guide to new developments and the diverse range of applications of this approach.In part one, all modern and classical techniques of solving random matrix models are explored, including orthogonal polynomials, exact replicas or supersymmetry.

Log-Gases and Random Matrices (LMS-34)

Download Log-Gases and Random Matrices (LMS-34) PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400835410
Total Pages : 808 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Log-Gases and Random Matrices (LMS-34) by : Peter J. Forrester

Download or read book Log-Gases and Random Matrices (LMS-34) written by Peter J. Forrester and published by Princeton University Press. This book was released on 2010-07-01 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory, but also of the Laguerre and Jacobi ensembles, and their beta extensions. Prominence is given to the computation of a multitude of Jacobians; determinantal point processes and orthogonal polynomials of one variable; the Selberg integral, Jack polynomials, and generalized hypergeometric functions; Painlevé transcendents; macroscopic electrostatistics and asymptotic formulas; nonintersecting paths and models in statistical mechanics; and applications of random matrix theory. This is the first textbook development of both nonsymmetric and symmetric Jack polynomial theory, as well as the connection between Selberg integral theory and beta ensembles. The author provides hundreds of guided exercises and linked topics, making Log-Gases and Random Matrices an indispensable reference work, as well as a learning resource for all students and researchers in the field.

Applications of Random Matrices in Physics

Download Applications of Random Matrices in Physics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 140204531X
Total Pages : 519 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Applications of Random Matrices in Physics by : Édouard Brezin

Download or read book Applications of Random Matrices in Physics written by Édouard Brezin and published by Springer Science & Business Media. This book was released on 2006-07-03 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random matrices are widely and successfully used in physics for almost 60-70 years, beginning with the works of Dyson and Wigner. Although it is an old subject, it is constantly developing into new areas of physics and mathematics. It constitutes now a part of the general culture of a theoretical physicist. Mathematical methods inspired by random matrix theory become more powerful, sophisticated and enjoy rapidly growing applications in physics. Recent examples include the calculation of universal correlations in the mesoscopic system, new applications in disordered and quantum chaotic systems, in combinatorial and growth models, as well as the recent breakthrough, due to the matrix models, in two dimensional gravity and string theory and the non-abelian gauge theories. The book consists of the lectures of the leading specialists and covers rather systematically many of these topics. It can be useful to the specialists in various subjects using random matrices, from PhD students to confirmed scientists.

Lectures on Probability Theory and Mathematical Statistics - 3rd Edition

Download Lectures on Probability Theory and Mathematical Statistics - 3rd Edition PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781981369195
Total Pages : 670 pages
Book Rating : 4.3/5 (691 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Probability Theory and Mathematical Statistics - 3rd Edition by : Marco Taboga

Download or read book Lectures on Probability Theory and Mathematical Statistics - 3rd Edition written by Marco Taboga and published by Createspace Independent Publishing Platform. This book was released on 2017-12-08 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a collection of 80 short and self-contained lectures covering most of the topics that are usually taught in intermediate courses in probability theory and mathematical statistics. There are hundreds of examples, solved exercises and detailed derivations of important results. The step-by-step approach makes the book easy to understand and ideal for self-study. One of the main aims of the book is to be a time saver: it contains several results and proofs, especially on probability distributions, that are hard to find in standard references and are scattered here and there in more specialistic books. The topics covered by the book are as follows. PART 1 - MATHEMATICAL TOOLS: set theory, permutations, combinations, partitions, sequences and limits, review of differentiation and integration rules, the Gamma and Beta functions. PART 2 - FUNDAMENTALS OF PROBABILITY: events, probability, independence, conditional probability, Bayes' rule, random variables and random vectors, expected value, variance, covariance, correlation, covariance matrix, conditional distributions and conditional expectation, independent variables, indicator functions. PART 3 - ADDITIONAL TOPICS IN PROBABILITY THEORY: probabilistic inequalities, construction of probability distributions, transformations of probability distributions, moments and cross-moments, moment generating functions, characteristic functions. PART 4 - PROBABILITY DISTRIBUTIONS: Bernoulli, binomial, Poisson, uniform, exponential, normal, Chi-square, Gamma, Student's t, F, multinomial, multivariate normal, multivariate Student's t, Wishart. PART 5 - MORE DETAILS ABOUT THE NORMAL DISTRIBUTION: linear combinations, quadratic forms, partitions. PART 6 - ASYMPTOTIC THEORY: sequences of random vectors and random variables, pointwise convergence, almost sure convergence, convergence in probability, mean-square convergence, convergence in distribution, relations between modes of convergence, Laws of Large Numbers, Central Limit Theorems, Continuous Mapping Theorem, Slutsky's Theorem. PART 7 - FUNDAMENTALS OF STATISTICS: statistical inference, point estimation, set estimation, hypothesis testing, statistical inferences about the mean, statistical inferences about the variance.

Free Probability and Random Matrices

Download Free Probability and Random Matrices PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493969420
Total Pages : 343 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Free Probability and Random Matrices by : James A. Mingo

Download or read book Free Probability and Random Matrices written by James A. Mingo and published by Springer. This book was released on 2017-06-24 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.

Modern Aspects of Random Matrix Theory

Download Modern Aspects of Random Matrix Theory PDF Online Free

Author :
Publisher :
ISBN 13 : 9781470416607
Total Pages : 174 pages
Book Rating : 4.4/5 (166 download)

DOWNLOAD NOW!


Book Synopsis Modern Aspects of Random Matrix Theory by : AMS Short Course, Random Matrices

Download or read book Modern Aspects of Random Matrix Theory written by AMS Short Course, Random Matrices and published by . This book was released on 2014 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt:

An Introduction to Matrix Concentration Inequalities

Download An Introduction to Matrix Concentration Inequalities PDF Online Free

Author :
Publisher :
ISBN 13 : 9781601988386
Total Pages : 256 pages
Book Rating : 4.9/5 (883 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Matrix Concentration Inequalities by : Joel Tropp

Download or read book An Introduction to Matrix Concentration Inequalities written by Joel Tropp and published by . This book was released on 2015-05-27 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random matrices now play a role in many areas of theoretical, applied, and computational mathematics. It is therefore desirable to have tools for studying random matrices that are flexible, easy to use, and powerful. Over the last fifteen years, researchers have developed a remarkable family of results, called matrix concentration inequalities, that achieve all of these goals. This monograph offers an invitation to the field of matrix concentration inequalities. It begins with some history of random matrix theory; it describes a flexible model for random matrices that is suitable for many problems; and it discusses the most important matrix concentration results. To demonstrate the value of these techniques, the presentation includes examples drawn from statistics, machine learning, optimization, combinatorics, algorithms, scientific computing, and beyond.

From Random Walks to Random Matrices

Download From Random Walks to Random Matrices PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0191091685
Total Pages : 544 pages
Book Rating : 4.1/5 (91 download)

DOWNLOAD NOW!


Book Synopsis From Random Walks to Random Matrices by : Jean Zinn-Justin

Download or read book From Random Walks to Random Matrices written by Jean Zinn-Justin and published by Oxford University Press. This book was released on 2019-06-19 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical physics is a cornerstone of modern physics and provides a foundation for all modern quantitative science. It aims to describe all natural phenomena using mathematical theories and models, and in consequence develops our understanding of the fundamental nature of the universe. This books offers an overview of major areas covering the recent developments in modern theoretical physics. Each chapter introduces a new key topic and develops the discussion in a self-contained manner. At the same time the selected topics have common themes running throughout the book, which connect the independent discussions. The main themes are renormalization group, fixed points, universality, and continuum limit, which open and conclude the work. The development of modern theoretical physics has required important concepts and novel mathematical tools, examples discussed in the book include path and field integrals, the notion of effective quantum or statistical field theories, gauge theories, and the mathematical structure at the basis of the interactions in fundamental particle physics, including quantization problems and anomalies, stochastic dynamical equations, and summation of perturbative series.

Combinatorics and Random Matrix Theory

Download Combinatorics and Random Matrix Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821848410
Total Pages : 478 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Combinatorics and Random Matrix Theory by : Jinho Baik

Download or read book Combinatorics and Random Matrix Theory written by Jinho Baik and published by American Mathematical Soc.. This book was released on 2016-06-22 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last fifteen years a variety of problems in combinatorics have been solved in terms of random matrix theory. More precisely, the situation is as follows: the problems at hand are probabilistic in nature and, in an appropriate scaling limit, it turns out that certain key quantities associated with these problems behave statistically like the eigenvalues of a (large) random matrix. Said differently, random matrix theory provides a “stochastic special function theory” for a broad and growing class of problems in combinatorics. The goal of this book is to analyze in detail two key examples of this phenomenon, viz., Ulam's problem for increasing subsequences of random permutations and domino tilings of the Aztec diamond. Other examples are also described along the way, but in less detail. Techniques from many different areas in mathematics are needed to analyze these problems. These areas include combinatorics, probability theory, functional analysis, complex analysis, and the theory of integrable systems. The book is self-contained, and along the way we develop enough of the theory we need from each area that a general reader with, say, two or three years experience in graduate school can learn the subject directly from the text.