Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Models To Illustrate The Foundations Of Mathematics
Download Models To Illustrate The Foundations Of Mathematics full books in PDF, epub, and Kindle. Read online Models To Illustrate The Foundations Of Mathematics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Models to Illustrate the Foundations of Mathematics by : C. Elliott
Download or read book Models to Illustrate the Foundations of Mathematics written by C. Elliott and published by . This book was released on 1914 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Model Theory written by and published by . This book was released on 1973 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Conceptions of Set and the Foundations of Mathematics by : Luca Incurvati
Download or read book Conceptions of Set and the Foundations of Mathematics written by Luca Incurvati and published by Cambridge University Press. This book was released on 2020-01-23 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a detailed and critical examination of the available conceptions of set and proposes a novel version.
Book Synopsis Mathematics for Machine Learning by : Marc Peter Deisenroth
Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Book Synopsis The Foundations of Mathematics by : Kenneth Kunen
Download or read book The Foundations of Mathematics written by Kenneth Kunen and published by . This book was released on 2009 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choice, well-orderings, and the theory of uncountable cardinals. The Model Theory chapter discusses predicate logic and formal proofs, and covers the Completeness, Compactness, and Lowenheim-Skolem Theorems, elementary submodels, model completeness, and applications to algebra. This chapter also continues the foundational issues begun in the set theory chapter. Mathematics can now be viewed as formal proofs from ZFC. Also, model theory leads to models of set theory. This includes a discussion of absoluteness, and an analysis of models such as H( ) and R( ). The Recursion Theory chapter develops some basic facts about computable functions, and uses them to prove a number of results of foundational importance; in particular, Church's theorem on the undecidability of logical consequence, the incompleteness theorems of Godel, and Tarski's theorem on the non-definability of truth.
Book Synopsis The Theory of Models by : J.W. Addison
Download or read book The Theory of Models written by J.W. Addison and published by Elsevier. This book was released on 2014-05-27 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies in Logic and the Foundations of Mathematics: The Theory of Models covers the proceedings of the International Symposium on the Theory of Models, held at the University of California, Berkeley on June 25 to July 11, 1963. The book focuses on works devoted to the foundations of mathematics, generally known as "the theory of models." The selection first discusses the method of alternating chains, semantic construction of Lewis's systems S4 and S5, and continuous model theory. Concerns include ordered model theory, 2-valued model theory, semantics, sequents, axiomatization, formulas, axiomatic approach to hierarchies, alternating chains, and difference hierarchies. The text also ponders on Boolean notions extended to higher dimensions, elementary theories with models without automorphisms, and applications of the notions of forcing and generic sets. The manuscript takes a look at a hypothesis concerning the extension of finite relations and its verification for certain special cases, theories of functors and models, model-theoretic methods in the study of elementary logic, and extensions of relational structures. The text also reviews relatively categorical and normal theories, algebraic theories, categories, and functors, denumerable models of theories with extra predicates, and non-standard models for fragments of number theory. The selection is highly recommended for mathematicians and researchers interested in the theory of models.
Book Synopsis Sets for Mathematics by : F. William Lawvere
Download or read book Sets for Mathematics written by F. William Lawvere and published by Cambridge University Press. This book was released on 2003-01-27 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, first published in 2003, categorical algebra is used to build a foundation for the study of geometry, analysis, and algebra.
Book Synopsis Mathematical Foundations of Infinite-Dimensional Statistical Models by : Evarist Giné
Download or read book Mathematical Foundations of Infinite-Dimensional Statistical Models written by Evarist Giné and published by Cambridge University Press. This book was released on 2021-03-25 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: In nonparametric and high-dimensional statistical models, the classical Gauss–Fisher–Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, approximation and wavelet theory, and the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In a final chapter the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. Winner of the 2017 PROSE Award for Mathematics.
Book Synopsis Foundations of Mathematical System Dynamics by : George J. Klir
Download or read book Foundations of Mathematical System Dynamics written by George J. Klir and published by Elsevier. This book was released on 2017-05-25 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a foundational study of causality as conceived in the mathematical sciences. It is shown that modern mathematical dynamics involves a formulation of the fundamental concept of causality, and an exhaustive classification of causal systems. Among them are the 'self-steering' and 'self-regulating' systems, which together form the class of purposive systems, on whose specific properties the book then focuses. These properties are the mathematical-dynamical foundations of the behavioural and social sciences. This is the definitive book on causality and purposive processes by the originator of the mathematical concept of self-steering.
Book Synopsis Set Theory, Arithmetic, and Foundations of Mathematics by : Juliette Kennedy
Download or read book Set Theory, Arithmetic, and Foundations of Mathematics written by Juliette Kennedy and published by Cambridge University Press. This book was released on 2011-09-01 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of papers from various areas of mathematical logic showcases the remarkable breadth and richness of the field. Leading authors reveal how contemporary technical results touch upon foundational questions about the nature of mathematics. Highlights of the volume include: a history of Tennenbaum's theorem in arithmetic; a number of papers on Tennenbaum phenomena in weak arithmetics as well as on other aspects of arithmetics, such as interpretability; the transcript of Gödel's previously unpublished 1972–1975 conversations with Sue Toledo, along with an appreciation of the same by Curtis Franks; Hugh Woodin's paper arguing against the generic multiverse view; Anne Troelstra's history of intuitionism through 1991; and Aki Kanamori's history of the Suslin problem in set theory. The book provides a historical and philosophical treatment of particular theorems in arithmetic and set theory, and is ideal for researchers and graduate students in mathematical logic and philosophy of mathematics.
Book Synopsis The Mathematics of Marriage by : John M. Gottman
Download or read book The Mathematics of Marriage written by John M. Gottman and published by MIT Press. This book was released on 2005-01-14 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: Divorce rates are at an all-time high. But without a theoretical understanding of the processes related to marital stability and dissolution, it is difficult to design and evaluate new marriage interventions. The Mathematics of Marriage provides the foundation for a scientific theory of marital relations. The book does not rely on metaphors, but develops and applies a mathematical model using difference equations. The work is the fulfillment of the goal to build a mathematical framework for the general system theory of families first suggested by Ludwig Von Bertalanffy in the 1960s.The book also presents a complete introduction to the mathematics involved in theory building and testing, and details the development of experiments and models. In one "marriage experiment," for example, the authors explored the effects of lowering or raising a couple's heart rates. Armed with their mathematical model, they were able to do real experiments to determine which processes were affected by their interventions. Applying ideas such as phase space, null clines, influence functions, inertia, and uninfluenced and influenced stable steady states (attractors), the authors show how other researchers can use the methods to weigh their own data with positive and negative weights. While the focus is on modeling marriage, the techniques can be applied to other types of psychological phenomena as well.
Book Synopsis Elements of Mathematical Logic by : Georg Kreisel
Download or read book Elements of Mathematical Logic written by Georg Kreisel and published by Elsevier. This book was released on 1967 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Mathematical Foundations for Data Analysis by : Jeff M. Phillips
Download or read book Mathematical Foundations for Data Analysis written by Jeff M. Phillips and published by Springer Nature. This book was released on 2021-03-29 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.
Book Synopsis Foundations of Constructive Mathematics by : M.J. Beeson
Download or read book Foundations of Constructive Mathematics written by M.J. Beeson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about some recent work in a subject usually considered part of "logic" and the" foundations of mathematics", but also having close connec tions with philosophy and computer science. Namely, the creation and study of "formal systems for constructive mathematics". The general organization of the book is described in the" User's Manual" which follows this introduction, and the contents of the book are described in more detail in the introductions to Part One, Part Two, Part Three, and Part Four. This introduction has a different purpose; it is intended to provide the reader with a general view of the subject. This requires, to begin with, an elucidation of both the concepts mentioned in the phrase, "formal systems for constructive mathematics". "Con structive mathematics" refers to mathematics in which, when you prove that l a thing exists (having certain desired properties) you show how to find it. Proof by contradiction is the most common way of proving something exists without showing how to find it - one assumes that nothing exists with the desired properties, and derives a contradiction. It was only in the last two decades of the nineteenth century that mathematicians began to exploit this method of proof in ways that nobody had previously done; that was partly made possible by the creation and development of set theory by Georg Cantor and Richard Dedekind.
Book Synopsis Practical Foundations of Mathematics by : Paul Taylor
Download or read book Practical Foundations of Mathematics written by Paul Taylor and published by Cambridge University Press. This book was released on 1999-05-13 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Foundations collects the methods of construction of the objects of twentieth-century mathematics. Although it is mainly concerned with a framework essentially equivalent to intuitionistic Zermelo-Fraenkel logic, the book looks forward to more subtle bases in categorical type theory and the machine representation of mathematics. Each idea is illustrated by wide-ranging examples, and followed critically along its natural path, transcending disciplinary boundaries between universal algebra, type theory, category theory, set theory, sheaf theory, topology and programming. Students and teachers of computing, mathematics and philosophy will find this book both readable and of lasting value as a reference work.
Book Synopsis Mathematical Foundations of Neuroscience by : G. Bard Ermentrout
Download or read book Mathematical Foundations of Neuroscience written by G. Bard Ermentrout and published by Springer Science & Business Media. This book was released on 2010-07-01 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.
Book Synopsis Model Theory and the Philosophy of Mathematical Practice by : John T. Baldwin
Download or read book Model Theory and the Philosophy of Mathematical Practice written by John T. Baldwin and published by Cambridge University Press. This book was released on 2018-01-25 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recounts the modern transformation of model theory and its effects on the philosophy of mathematics and mathematical practice.