Quantitative Methods for Economics and Finance

Download Quantitative Methods for Economics and Finance PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3036501967
Total Pages : 418 pages
Book Rating : 4.0/5 (365 download)

DOWNLOAD NOW!


Book Synopsis Quantitative Methods for Economics and Finance by : J.E. Trinidad-Segovia

Download or read book Quantitative Methods for Economics and Finance written by J.E. Trinidad-Segovia and published by MDPI. This book was released on 2021-02-12 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of papers for the Special Issue “Quantitative Methods for Economics and Finance” of the journal Mathematics. This Special Issue reflects on the latest developments in different fields of economics and finance where mathematics plays a significant role. The book gathers 19 papers on topics such as volatility clusters and volatility dynamic, forecasting, stocks, indexes, cryptocurrencies and commodities, trade agreements, the relationship between volume and price, trading strategies, efficiency, regression, utility models, fraud prediction, or intertemporal choice.

Forecasting: principles and practice

Download Forecasting: principles and practice PDF Online Free

Author :
Publisher : OTexts
ISBN 13 : 0987507117
Total Pages : 380 pages
Book Rating : 4.9/5 (875 download)

DOWNLOAD NOW!


Book Synopsis Forecasting: principles and practice by : Rob J Hyndman

Download or read book Forecasting: principles and practice written by Rob J Hyndman and published by OTexts. This book was released on 2018-05-08 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Financial Data Resampling for Machine Learning Based Trading

Download Financial Data Resampling for Machine Learning Based Trading PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030683796
Total Pages : 93 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Financial Data Resampling for Machine Learning Based Trading by : Tomé Almeida Borges

Download or read book Financial Data Resampling for Machine Learning Based Trading written by Tomé Almeida Borges and published by Springer Nature. This book was released on 2021-02-22 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a system that combines the expertise of four algorithms, namely Gradient Tree Boosting, Logistic Regression, Random Forest and Support Vector Classifier to trade with several cryptocurrencies. A new method for resampling financial data is presented as alternative to the classical time sampled data commonly used in financial market trading. The new resampling method uses a closing value threshold to resample the data creating a signal better suited for financial trading, thus achieving higher returns without increased risk. The performance of the algorithm with the new resampling method and the classical time sampled data are compared and the advantages of using the system developed in this work are highlighted.

Machine Learning for Algorithmic Trading

Download Machine Learning for Algorithmic Trading PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1839216786
Total Pages : 822 pages
Book Rating : 4.8/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Algorithmic Trading by : Stefan Jansen

Download or read book Machine Learning for Algorithmic Trading written by Stefan Jansen and published by Packt Publishing Ltd. This book was released on 2020-07-31 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.

Advanced Studies of Financial Technologies and Cryptocurrency Markets

Download Advanced Studies of Financial Technologies and Cryptocurrency Markets PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811544980
Total Pages : 256 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Advanced Studies of Financial Technologies and Cryptocurrency Markets by : Lukáš Pichl

Download or read book Advanced Studies of Financial Technologies and Cryptocurrency Markets written by Lukáš Pichl and published by Springer Nature. This book was released on 2020-07-29 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows that research contributions from different fields—finance, economics, computer sciences, and physics—can provide useful insights into key issues in financial and cryptocurrency markets. Presenting the latest empirical and theoretical advances, it helps readers gain a better understanding of financial markets and cryptocurrencies. Bitcoin was the first cryptocurrency to use a peer-to-peer network to prevent double-spending and to control its issue without the need for a central authority, and it has attracted wide public attention since its introduction. In recent years, the academic community has also started gaining interest in cyptocurrencies, and research in the field has grown rapidly. This book presents is a collection of the latest work on cryptocurrency markets and the properties of those markets. This book will appeal to graduate students and researchers from disciplines such as finance, economics, financial engineering, computer science, physics and applied mathematics working in the field of financial markets, including cryptocurrency markets.

Advances in Financial Machine Learning

Download Advances in Financial Machine Learning PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119482119
Total Pages : 395 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Advances in Financial Machine Learning by : Marcos Lopez de Prado

Download or read book Advances in Financial Machine Learning written by Marcos Lopez de Prado and published by John Wiley & Sons. This book was released on 2018-01-23 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.

Machine Learning for Predictive Analysis

Download Machine Learning for Predictive Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811571066
Total Pages : 627 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Predictive Analysis by : Amit Joshi

Download or read book Machine Learning for Predictive Analysis written by Amit Joshi and published by Springer Nature. This book was released on 2020-10-22 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers papers addressing state-of-the-art research in the areas of machine learning and predictive analysis, presented virtually at the Fourth International Conference on Information and Communication Technology for Intelligent Systems (ICTIS 2020), India. It covers topics such as intelligent agent and multi-agent systems in various domains, machine learning, intelligent information retrieval and business intelligence, intelligent information system development using design science principles, intelligent web mining and knowledge discovery systems.

Handbook of Digital Currency

Download Handbook of Digital Currency PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128023511
Total Pages : 613 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Digital Currency by :

Download or read book Handbook of Digital Currency written by and published by Academic Press. This book was released on 2015-05-05 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporating currencies, payment methods, and protocols that computers use to talk to each other, digital currencies are poised to grow in use and importance. The Handbook of Digital Currency gives readers a way to learn about subjects outside their specialties and provides authoritative background and tools for those whose primary source of information is journal articles. Taking a cross-country perspective, its comprehensive view of the field includes history, technicality, IT, finance, economics, legal, tax and regulatory environment. For those who come from different backgrounds with different questions in mind, The Handbook of Digital Currency is an essential starting point. Discusses all major strategies and tactics associated with digital currencies, their uses, and their regulations Presents future scenarios for the growth of digital currencies Written for regulators, crime prevention units, tax authorities, entrepreneurs, micro-financiers, micro-payment businesses, cryptography experts, software developers, venture capitalists, hedge fund managers, hardware manufacturers, credit card providers, money changers, remittance service providers, exchanges, and academics Winner of the 2015 "Outstanding Business Reference Source" by the Reference and User Services Association (RUSA)

Artificial Intelligence and Evolutionary Computations in Engineering Systems

Download Artificial Intelligence and Evolutionary Computations in Engineering Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811501998
Total Pages : 781 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence and Evolutionary Computations in Engineering Systems by : Subhransu Sekhar Dash

Download or read book Artificial Intelligence and Evolutionary Computations in Engineering Systems written by Subhransu Sekhar Dash and published by Springer Nature. This book was released on 2020-02-08 with total page 781 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected papers presented at the 4th International Conference on Artificial Intelligence and Evolutionary Computations in Engineering Systems, held at the SRM Institute of Science and Technology, Kattankulathur, Chennai, India, from 11 to 13 April 2019. It covers advances and recent developments in various computational intelligence techniques, with an emphasis on the design of communication systems. In addition, it shares valuable insights into advanced computational methodologies such as neural networks, fuzzy systems, evolutionary algorithms, hybrid intelligent systems, uncertain reasoning techniques, and other machine learning methods and their application to decision-making and problem-solving in mobile and wireless communication networks.

CRYPTOCURRENCY PRICE ANALYSIS, PREDICTION, AND FORECASTING USING MACHINE LEARNING WITH PYTHON

Download CRYPTOCURRENCY PRICE ANALYSIS, PREDICTION, AND FORECASTING USING MACHINE LEARNING WITH PYTHON PDF Online Free

Author :
Publisher : BALIGE PUBLISHING
ISBN 13 :
Total Pages : 303 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis CRYPTOCURRENCY PRICE ANALYSIS, PREDICTION, AND FORECASTING USING MACHINE LEARNING WITH PYTHON by : Vivian Siahaan

Download or read book CRYPTOCURRENCY PRICE ANALYSIS, PREDICTION, AND FORECASTING USING MACHINE LEARNING WITH PYTHON written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-07-21 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this project, we will be conducting a comprehensive analysis, prediction, and forecasting of cryptocurrency prices using machine learning with Python. The dataset we will be working with contains historical cryptocurrency price data, and our main objective is to build models that can accurately predict future price movements and daily returns. The first step of the project involves exploring the dataset to gain insights into the structure and contents of the data. We will examine the columns, data types, and any missing values present. After that, we will preprocess the data, handling any missing values and converting data types as needed. This will ensure that our data is clean and ready for analysis. Next, we will proceed with visualizing the dataset to understand the trends and patterns in cryptocurrency prices over time. We will create line plots, box plot, violin plot, and other visualizations to study price movements, trading volumes, and volatility across different cryptocurrencies. These visualizations will help us identify any apparent trends or seasonality in the data. To gain a deeper understanding of the time-series nature of the data, we will conduct time-series analysis year-wise and month-wise. This analysis will involve decomposing the time-series into its individual components like trend, seasonality, and noise. Additionally, we will look for patterns in price movements during specific months to identify any recurring seasonal effects. To enhance our predictions, we will also incorporate technical indicators into our analysis. Technical indicators, such as moving averages, Relative Strength Index (RSI), and Moving Average Convergence Divergence (MACD), provide valuable information about price momentum and market trends. These indicators can be used as additional features in our machine learning models. With a strong foundation of data exploration, visualization, and time-series analysis, we will now move on to building machine learning models for forecasting the closing price of cryptocurrencies. We will utilize algorithms like Linear Regression, Support Vector Regression, Random Forest Regression, Decision Tree Regression, K-Nearest Neighbors Regression, Adaboost Regression, Gradient Boosting Regression, Extreme Gradient Boosting Regression, Light Gradient Boosting Regression, Catboost Regression, Multi-Layer Perceptron Regression, Lasso Regression, and Ridge Regression to make forecasting. By training our models on historical data, they will learn to recognize patterns and make predictions for future price movements. As part of our machine learning efforts, we will also develop models for predicting daily returns of cryptocurrencies. Daily returns are essential indicators for investors and traders, as they reflect the percentage change in price from one day to the next. By using historical price data and technical indicators as input features, we can build models that forecast daily returns accurately. Throughout the project, we will perform extensive hyperparameter tuning using techniques like Grid Search and Random Search. This will help us identify the best combinations of hyperparameters for each model, optimizing their performance. To validate the accuracy and robustness of our models, we will use various evaluation metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared. These metrics will provide insights into the model's ability to predict cryptocurrency prices accurately. In conclusion, this project on cryptocurrency price analysis, prediction, and forecasting is a comprehensive exploration of using machine learning with Python to analyze and predict cryptocurrency price movements. By leveraging data visualization, time-series analysis, technical indicators, and machine learning algorithms, we aim to build accurate and reliable models for predicting future price movements and daily returns. The project's outcomes will be valuable for investors, traders, and analysts looking to make informed decisions in the highly volatile and dynamic world of cryptocurrencies. Through rigorous evaluation and validation, we strive to create robust models that can contribute to a better understanding of cryptocurrency market dynamics and support data-driven decision-making.

Data Science for Economics and Finance

Download Data Science for Economics and Finance PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030668916
Total Pages : 357 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Data Science for Economics and Finance by : Sergio Consoli

Download or read book Data Science for Economics and Finance written by Sergio Consoli and published by Springer Nature. This book was released on 2021 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.

Classification and Regression Trees

Download Classification and Regression Trees PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 135146048X
Total Pages : 370 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Classification and Regression Trees by : Leo Breiman

Download or read book Classification and Regression Trees written by Leo Breiman and published by Routledge. This book was released on 2017-10-19 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

Learning Deep Architectures for AI

Download Learning Deep Architectures for AI PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 1601982941
Total Pages : 145 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Learning Deep Architectures for AI by : Yoshua Bengio

Download or read book Learning Deep Architectures for AI written by Yoshua Bengio and published by Now Publishers Inc. This book was released on 2009 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.

Blockchain Technologies for Sustainable Development in Smart Cities

Download Blockchain Technologies for Sustainable Development in Smart Cities PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 179989276X
Total Pages : 285 pages
Book Rating : 4.7/5 (998 download)

DOWNLOAD NOW!


Book Synopsis Blockchain Technologies for Sustainable Development in Smart Cities by : Swarnalatha, P.

Download or read book Blockchain Technologies for Sustainable Development in Smart Cities written by Swarnalatha, P. and published by IGI Global. This book was released on 2022-02-18 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Blockchain technology has great potential to radically change our socio-economic systems by guaranteeing secure transactions between untrusted entities, reducing costs, and simplifying many processes. However, employing blockchain techniques in sustainable applications development for smart cities still has some technical challenges and limitations. Blockchain Technologies for Sustainable Development in Smart Cities investigates blockchain-enabled technology for smart city developments and big data applications. This book provides relevant theoretical frameworks and the latest empirical research findings in the area. Covering topics such as digital finance, smart city technology, and data processing architecture, this book is an essential reference for electricians, policymakers, local governments, city committees, computer scientists, IT professionals, professors and students of higher education, researchers, and academicians.

Machine Learning and Data Science Blueprints for Finance

Download Machine Learning and Data Science Blueprints for Finance PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492073008
Total Pages : 426 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning and Data Science Blueprints for Finance by : Hariom Tatsat

Download or read book Machine Learning and Data Science Blueprints for Finance written by Hariom Tatsat and published by "O'Reilly Media, Inc.". This book was released on 2020-10-01 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You'll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You'll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations

Neural Networks: Tricks of the Trade

Download Neural Networks: Tricks of the Trade PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642352898
Total Pages : 753 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks: Tricks of the Trade by : Grégoire Montavon

Download or read book Neural Networks: Tricks of the Trade written by Grégoire Montavon and published by Springer. This book was released on 2012-11-14 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and the practice of training neural networks has undergone a number of important changes, for example, use of deep learning machines. The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.

Bitcoin and Cryptocurrency Technologies

Download Bitcoin and Cryptocurrency Technologies PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400884152
Total Pages : 335 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Bitcoin and Cryptocurrency Technologies by : Arvind Narayanan

Download or read book Bitcoin and Cryptocurrency Technologies written by Arvind Narayanan and published by Princeton University Press. This book was released on 2016-07-19 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative introduction to the exciting new technologies of digital money Bitcoin and Cryptocurrency Technologies provides a comprehensive introduction to the revolutionary yet often misunderstood new technologies of digital currency. Whether you are a student, software developer, tech entrepreneur, or researcher in computer science, this authoritative and self-contained book tells you everything you need to know about the new global money for the Internet age. How do Bitcoin and its block chain actually work? How secure are your bitcoins? How anonymous are their users? Can cryptocurrencies be regulated? These are some of the many questions this book answers. It begins by tracing the history and development of Bitcoin and cryptocurrencies, and then gives the conceptual and practical foundations you need to engineer secure software that interacts with the Bitcoin network as well as to integrate ideas from Bitcoin into your own projects. Topics include decentralization, mining, the politics of Bitcoin, altcoins and the cryptocurrency ecosystem, the future of Bitcoin, and more. An essential introduction to the new technologies of digital currency Covers the history and mechanics of Bitcoin and the block chain, security, decentralization, anonymity, politics and regulation, altcoins, and much more Features an accompanying website that includes instructional videos for each chapter, homework problems, programming assignments, and lecture slides Also suitable for use with the authors' Coursera online course Electronic solutions manual (available only to professors)