Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Model Averaging
Download Model Averaging full books in PDF, epub, and Kindle. Read online Model Averaging ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Download or read book Model Averaging written by David Fletcher and published by Springer. This book was released on 2019-01-17 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a concise and accessible overview of model averaging, with a focus on applications. Model averaging is a common means of allowing for model uncertainty when analysing data, and has been used in a wide range of application areas, such as ecology, econometrics, meteorology and pharmacology. The book presents an overview of the methods developed in this area, illustrating many of them with examples from the life sciences involving real-world data. It also includes an extensive list of references and suggestions for further research. Further, it clearly demonstrates the links between the methods developed in statistics, econometrics and machine learning, as well as the connection between the Bayesian and frequentist approaches to model averaging. The book appeals to statisticians and scientists interested in what methods are available, how they differ and what is known about their properties. It is assumed that readers are familiar with the basic concepts of statistical theory and modelling, including probability, likelihood and generalized linear models.
Book Synopsis Model Selection and Model Averaging by : Gerda Claeskens
Download or read book Model Selection and Model Averaging written by Gerda Claeskens and published by . This book was released on 2008-07-28 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: First book to synthesize the research and practice from the active field of model selection.
Book Synopsis Forecasting Financial Time Series Using Model Averaging by : Francesco Ravazzolo
Download or read book Forecasting Financial Time Series Using Model Averaging written by Francesco Ravazzolo and published by Rozenberg Publishers. This book was released on 2007 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Believing in a single model may be dangerous, and addressing model uncertainty by averaging different models in making forecasts may be very beneficial. In this thesis we focus on forecasting financial time series using model averaging schemes as a way to produce optimal forecasts. We derive and discuss in simulation exercises and empirical applications model averaging techniques that can reproduce stylized facts of financial time series, such as low predictability and time-varying patterns. We emphasize that model averaging is not a "magic" methodology which solves a priori problems of poorly forecasting. Averaging techniques have an essential requirement: individual models have to fit data. In the first section we provide a general outline of the thesis and its contributions to previ ous research. In Chapter 2 we focus on the use of time varying model weight combinations. In Chapter 3, we extend the analysis in the previous chapter to a new Bayesian averaging scheme that models structural instability carefully. In Chapter 4 we focus on forecasting the term structure of U.S. interest rates. In Chapter 5 we attempt to shed more light on forecasting performance of stochastic day-ahead price models. We examine six stochastic price models to forecast day-ahead prices of the two most active power exchanges in the world: the Nordic Power Exchange and the Amsterdam Power Exchange. Three of these forecasting models include weather forecasts. To sum up, the research finds an increase of forecasting power of financial time series when parameter uncertainty, model uncertainty and optimal decision making are included.
Book Synopsis Model Based Inference in the Life Sciences by : David R. Anderson
Download or read book Model Based Inference in the Life Sciences written by David R. Anderson and published by Springer Science & Business Media. This book was released on 2007-12-22 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces a science philosophy called "information theoretic" based on Kullback-Leibler information theory. It focuses on a science philosophy based on "multiple working hypotheses" and statistical models to represent them. The text is written for people new to the information-theoretic approaches to statistical inference, whether graduate students, post-docs, or professionals. Readers are however expected to have a background in general statistical principles, regression analysis, and some exposure to likelihood methods. This is not an elementary text as it assumes reasonable competence in modeling and parameter estimation.
Book Synopsis Evidential Statistics, Model Identification, and Science by : Mark Louis Taper
Download or read book Evidential Statistics, Model Identification, and Science written by Mark Louis Taper and published by Frontiers Media SA. This book was released on 2022-02-15 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Financial Econometrics by : Yiu-Kuen Tse
Download or read book Financial Econometrics written by Yiu-Kuen Tse and published by MDPI. This book was released on 2019-10-14 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial econometrics has developed into a very fruitful and vibrant research area in the last two decades. The availability of good data promotes research in this area, specially aided by online data and high-frequency data. These two characteristics of financial data also create challenges for researchers that are different from classical macro-econometric and micro-econometric problems. This Special Issue is dedicated to research topics that are relevant for analyzing financial data. We have gathered six articles under this theme.
Book Synopsis Model Selection and Multimodel Inference by : Kenneth P. Burnham
Download or read book Model Selection and Multimodel Inference written by Kenneth P. Burnham and published by Springer Science & Business Media. This book was released on 2007-05-28 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique and comprehensive text on the philosophy of model-based data analysis and strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. It contains several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. The text has been written for biologists and statisticians using models for making inferences from empirical data.
Book Synopsis Models for Ecological Data by : James S. Clark
Download or read book Models for Ecological Data written by James S. Clark and published by Princeton University Press. This book was released on 2020-10-06 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: The environmental sciences are undergoing a revolution in the use of models and data. Facing ecological data sets of unprecedented size and complexity, environmental scientists are struggling to understand and exploit powerful new statistical tools for making sense of ecological processes. In Models for Ecological Data, James Clark introduces ecologists to these modern methods in modeling and computation. Assuming only basic courses in calculus and statistics, the text introduces readers to basic maximum likelihood and then works up to more advanced topics in Bayesian modeling and computation. Clark covers both classical statistical approaches and powerful new computational tools and describes how complexity can motivate a shift from classical to Bayesian methods. Through an available lab manual, the book introduces readers to the practical work of data modeling and computation in the language R. Based on a successful course at Duke University and National Science Foundation-funded institutes on hierarchical modeling, Models for Ecological Data will enable ecologists and other environmental scientists to develop useful models that make sense of ecological data. Consistent treatment from classical to modern Bayes Underlying distribution theory to algorithm development Many examples and applications Does not assume statistical background Extensive supporting appendixes Lab manual in R is available separately
Book Synopsis Interest Rate Models, Asset Allocation and Quantitative Techniques for Central Banks and Sovereign Wealth Funds by : A. Berkelaar
Download or read book Interest Rate Models, Asset Allocation and Quantitative Techniques for Central Banks and Sovereign Wealth Funds written by A. Berkelaar and published by Springer. This book was released on 2009-11-30 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume contains essential readings for financial analysts and market practitioners working at Central Banks and Sovereign Wealth Funds. It presents the reader with state-of-the-art methods that are directly implementable, and industry 'best-practices' as followed by leading institutions in their field.
Book Synopsis Handbook of Computable General Equilibrium Modeling by : Peter B. Dixon
Download or read book Handbook of Computable General Equilibrium Modeling written by Peter B. Dixon and published by Newnes. This book was released on 2013-01-08 with total page 1886 pages. Available in PDF, EPUB and Kindle. Book excerpt: Top scholars synthesize and analyze scholarship on this widely used tool of policy analysis in 27 articles, setting forth its accomplishments, difficulties, and means of implementation. Though CGE modeling does not play a prominent role in top U.S. graduate schools, it is employed universally in the development of economic policy. This collection is particularly important because it presents a history of modeling applications and examines competing points of view. - Presents coherent summaries of CGE theories that inform major model types - Covers the construction of CGE databases, model solving, and computer-assisted interpretation of results - Shows how CGE modeling has made a contribution to economic policy
Book Synopsis Building Regression Models with SAS by : Robert N. Rodriguez
Download or read book Building Regression Models with SAS written by Robert N. Rodriguez and published by SAS Institute. This book was released on 2023-04-18 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advance your skills in building predictive models with SAS! Building Regression Models with SAS: A Guide for Data Scientists teaches data scientists, statisticians, and other analysts who use SAS to train regression models for prediction with large, complex data. Each chapter focuses on a particular model and includes a high-level overview, followed by basic concepts, essential syntax, and examples using new procedures in both SAS/STAT and SAS Viya. By emphasizing introductory examples and interpretation of output, this book provides readers with a clear understanding of how to build the following types of models: general linear models quantile regression models logistic regression models generalized linear models generalized additive models proportional hazards regression models tree models models based on multivariate adaptive regression splines Building Regression Models with SAS is an essential guide to learning about a variety of models that provide interpretability as well as predictive performance.
Book Synopsis Essays in Honor of Subal Kumbhakar by : Christopher F. Parmeter
Download or read book Essays in Honor of Subal Kumbhakar written by Christopher F. Parmeter and published by Emerald Group Publishing. This book was released on 2024-04-05 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is the editor’s distinct privilege to gather this collection of papers that honors Subhal Kumbhakar’s many accomplishments, drawing further attention to the various areas of scholarship that he has touched.
Book Synopsis Experimental Design and Data Analysis for Biologists by : Gerry P. Quinn
Download or read book Experimental Design and Data Analysis for Biologists written by Gerry P. Quinn and published by Cambridge University Press. This book was released on 2023-09-07 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Requiring only introductory statistics and basic mathematics, this textbook avoids jargon and provides worked examples, data sets and R code, and review exercises. Designed for advanced undergraduates and postgraduates studying biostatistics and experiment design in biology-related fields, it applies statistical concepts to biological scenarios.
Book Synopsis Parameter Estimation for Animal Populations by : Larkin Powell
Download or read book Parameter Estimation for Animal Populations written by Larkin Powell and published by Lulu.com. This book was released on 2015 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a simple introduction to the logic behind analyses and sampling design for mark-recapture and survey efforts. With a focus on the early user and beginner, the book explains the complicated formulas and statistics that can be effectively used around the world in support of conservation efforts.
Book Synopsis Advances in Info-Metrics by : Min Chen
Download or read book Advances in Info-Metrics written by Min Chen and published by Oxford University Press. This book was released on 2020-11-06 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Info-metrics is a framework for modeling, reasoning, and drawing inferences under conditions of noisy and insufficient information. It is an interdisciplinary framework situated at the intersection of information theory, statistical inference, and decision-making under uncertainty. In Advances in Info-Metrics, Min Chen, J. Michael Dunn, Amos Golan, and Aman Ullah bring together a group of thirty experts to expand the study of info-metrics across the sciences and demonstrate how to solve problems using this interdisciplinary framework. Building on the theoretical underpinnings of info-metrics, the volume sheds new light on statistical inference, information, and general problem solving. The book explores the basis of information-theoretic inference and its mathematical and philosophical foundations. It emphasizes the interrelationship between information and inference and includes explanations of model building, theory creation, estimation, prediction, and decision making. Each of the nineteen chapters provides the necessary tools for using the info-metrics framework to solve a problem. The collection covers recent developments in the field, as well as many new cross-disciplinary case studies and examples. Designed to be accessible for researchers, graduate students, and practitioners across disciplines, this book provides a clear, hands-on experience for readers interested in solving problems when presented with incomplete and imperfect information.
Book Synopsis Statistical Models in Toxicology by : Mehdi Razzaghi
Download or read book Statistical Models in Toxicology written by Mehdi Razzaghi and published by CRC Press. This book was released on 2020-05-21 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Models in Toxicology presents an up-to-date and comprehensive account of mathematical statistics problems that occur in toxicology. This is as an exciting time in toxicology because of the attention given by statisticians to the problem of estimating the human health risk for environmental and occupational exposures. The development of modern statistical techniques with solid mathematical foundations in the 20th century and the advent of modern computers in the latter part of the century gave way to development of many statistical models and methods to describe toxicological processes and attempts to solve the associated problems. Not only have the models enjoyed a high level of elegance and sophistication mathematically, they are widely used by industry and government regulatory agencies. Features: Focuses on describing the statistical models in environmental toxicology that facilitate the assessment of risk mainly in humans. The properties and shortfalls of each model are discussed and its impact in the process of risk assessment is examined. Discusses models that assess the risk of mixtures of chemicals. Presents statistical models that are developed for risk estimation in different aspects of environmental toxicology including cancer and carcinogenic substances. Includes models for developmental and reproductive toxicity risk assessment, risk assessment in continuous outcomes and developmental neurotoxicity. Contains numerous examples and exercises. Statistical Models in Toxicology introduces a wide variety of statistical models that are currently utilized for dose-response modeling and risk analysis. These models are often developed based on design and regulatory guidelines of toxicological experiments. The book is suitable for practitioners or as use as a textbook for advanced undergraduate or graduate students of mathematics and statistics.
Book Synopsis Introduction to Spatial Econometrics by : James LeSage
Download or read book Introduction to Spatial Econometrics written by James LeSage and published by CRC Press. This book was released on 2009-01-20 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although interest in spatial regression models has surged in recent years, a comprehensive, up-to-date text on these approaches does not exist. Filling this void, Introduction to Spatial Econometrics presents a variety of regression methods used to analyze spatial data samples that violate the traditional assumption of independence between observat