Metric Spaces of Non-Positive Curvature

Download Metric Spaces of Non-Positive Curvature PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662124947
Total Pages : 665 pages
Book Rating : 4.6/5 (621 download)

DOWNLOAD NOW!


Book Synopsis Metric Spaces of Non-Positive Curvature by : Martin R. Bridson

Download or read book Metric Spaces of Non-Positive Curvature written by Martin R. Bridson and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries. The theory of these objects is developed in a manner accessible to anyone familiar with the rudiments of topology and group theory: non-trivial theorems are proved by concatenating elementary geometric arguments, and many examples are given. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds. More specialized topics, such as complexes of groups, are covered in Part III.

Metric Spaces, Convexity and Nonpositive Curvature

Download Metric Spaces, Convexity and Nonpositive Curvature PDF Online Free

Author :
Publisher : European Mathematical Society
ISBN 13 : 9783037190104
Total Pages : 306 pages
Book Rating : 4.1/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Metric Spaces, Convexity and Nonpositive Curvature by : Athanase Papadopoulos

Download or read book Metric Spaces, Convexity and Nonpositive Curvature written by Athanase Papadopoulos and published by European Mathematical Society. This book was released on 2005 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Manifolds of Nonpositive Curvature

Download Manifolds of Nonpositive Curvature PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468491598
Total Pages : 280 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Manifolds of Nonpositive Curvature by : Werner Ballmann

Download or read book Manifolds of Nonpositive Curvature written by Werner Ballmann and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a complete and self-contained description of new results in the theory of manifolds of nonpositive curvature. It is based on lectures delivered by M. Gromov at the Collège de France in Paris. Therefore this book may also serve as an introduction to the subject of nonpositively curved manifolds. The latest progress in this area is reflected in the article of W. Ballmann describing the structure of manifolds of higher rank.

Lectures on Spaces of Nonpositive Curvature

Download Lectures on Spaces of Nonpositive Curvature PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034892403
Total Pages : 114 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Spaces of Nonpositive Curvature by : Werner Ballmann

Download or read book Lectures on Spaces of Nonpositive Curvature written by Werner Ballmann and published by Birkhäuser. This book was released on 2012-12-06 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Singular spaces with upper curvature bounds and, in particular, spaces of nonpositive curvature, have been of interest in many fields, including geometric (and combinatorial) group theory, topology, dynamical systems and probability theory. In the first two chapters of the book, a concise introduction into these spaces is given, culminating in the Hadamard-Cartan theorem and the discussion of the ideal boundary at infinity for simply connected complete spaces of nonpositive curvature. In the third chapter, qualitative properties of the geodesic flow on geodesically complete spaces of nonpositive curvature are discussed, as are random walks on groups of isometries of nonpositively curved spaces. The main class of spaces considered should be precisely complementary to symmetric spaces of higher rank and Euclidean buildings of dimension at least two (Rank Rigidity conjecture). In the smooth case, this is known and is the content of the Rank Rigidity theorem. An updated version of the proof of the latter theorem (in the smooth case) is presented in Chapter IV of the book. This chapter contains also a short introduction into the geometry of the unit tangent bundle of a Riemannian manifold and the basic facts about the geodesic flow. In an appendix by Misha Brin, a self-contained and short proof of the ergodicity of the geodesic flow of a compact Riemannian manifold of negative curvature is given. The proof is elementary and should be accessible to the non-specialist. Some of the essential features and problems of the ergodic theory of smooth dynamical systems are discussed, and the appendix can serve as an introduction into this theory.

An Invitation to Alexandrov Geometry

Download An Invitation to Alexandrov Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030053121
Total Pages : 95 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis An Invitation to Alexandrov Geometry by : Stephanie Alexander

Download or read book An Invitation to Alexandrov Geometry written by Stephanie Alexander and published by Springer. This book was released on 2019-05-08 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.

Gradient Flows

Download Gradient Flows PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 376438722X
Total Pages : 333 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Gradient Flows by : Luigi Ambrosio

Download or read book Gradient Flows written by Luigi Ambrosio and published by Springer Science & Business Media. This book was released on 2008-10-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.

A Course in Metric Geometry

Download A Course in Metric Geometry PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470468530
Total Pages : 415 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis A Course in Metric Geometry by : Dmitri Burago

Download or read book A Course in Metric Geometry written by Dmitri Burago and published by American Mathematical Society. This book was released on 2022-01-27 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Metric geometry” is an approach to geometry based on the notion of length on a topological space. This approach experienced a very fast development in the last few decades and penetrated into many other mathematical disciplines, such as group theory, dynamical systems, and partial differential equations. The objective of this graduate textbook is twofold: to give a detailed exposition of basic notions and techniques used in the theory of length spaces, and, more generally, to offer an elementary introduction into a broad variety of geometrical topics related to the notion of distance, including Riemannian and Carnot-Carathéodory metrics, the hyperbolic plane, distance-volume inequalities, asymptotic geometry (large scale, coarse), Gromov hyperbolic spaces, convergence of metric spaces, and Alexandrov spaces (non-positively and non-negatively curved spaces). The authors tend to work with “easy-to-touch” mathematical objects using “easy-to-visualize” methods. The authors set a challenging goal of making the core parts of the book accessible to first-year graduate students. Most new concepts and methods are introduced and illustrated using simplest cases and avoiding technicalities. The book contains many exercises, which form a vital part of the exposition.

Nonpositive Curvature: Geometric and Analytic Aspects

Download Nonpositive Curvature: Geometric and Analytic Aspects PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034889186
Total Pages : 116 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Nonpositive Curvature: Geometric and Analytic Aspects by : Jürgen Jost

Download or read book Nonpositive Curvature: Geometric and Analytic Aspects written by Jürgen Jost and published by Birkhäuser. This book was released on 2012-12-06 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book contains the lecture notes from a "Nachdiplomvorlesung", a topics course adressed to Ph. D. students, at the ETH ZUrich during the winter term 95/96. Consequently, these notes are arranged according to the requirements of organizing the material for oral exposition, and the level of difficulty and the exposition were adjusted to the audience in Zurich. The aim of the course was to introduce some geometric and analytic concepts that have been found useful in advancing our understanding of spaces of nonpos itive curvature. In particular in recent years, it has been realized that often it is useful for a systematic understanding not to restrict the attention to Riemannian manifolds only, but to consider more general classes of metric spaces of generalized nonpositive curvature. The basic idea is to isolate a property that on one hand can be formulated solely in terms of the distance function and on the other hand is characteristic of nonpositive sectional curvature on a Riemannian manifold, and then to take this property as an axiom for defining a metric space of nonposi tive curvature. Such constructions have been put forward by Wald, Alexandrov, Busemann, and others, and they will be systematically explored in Chapter 2. Our focus and treatment will often be different from the existing literature. In the first Chapter, we consider several classes of examples of Riemannian manifolds of nonpositive curvature, and we explain how conditions about nonpos itivity or negativity of curvature can be exploited in various geometric contexts.

Geometry and Dynamics in Gromov Hyperbolic Metric Spaces

Download Geometry and Dynamics in Gromov Hyperbolic Metric Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470434652
Total Pages : 321 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Geometry and Dynamics in Gromov Hyperbolic Metric Spaces by : Tushar Das

Download or read book Geometry and Dynamics in Gromov Hyperbolic Metric Spaces written by Tushar Das and published by American Mathematical Soc.. This book was released on 2017-04-14 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the foundations of the theory of groups and semigroups acting isometrically on Gromov hyperbolic metric spaces. Particular emphasis is paid to the geometry of their limit sets and on behavior not found in the proper setting. The authors provide a number of examples of groups which exhibit a wide range of phenomena not to be found in the finite-dimensional theory. The book contains both introductory material to help beginners as well as new research results, and closes with a list of attractive unsolved problems.

Convex Analysis and Optimization in Hadamard Spaces

Download Convex Analysis and Optimization in Hadamard Spaces PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110391082
Total Pages : 217 pages
Book Rating : 4.1/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Convex Analysis and Optimization in Hadamard Spaces by : Miroslav Bacak

Download or read book Convex Analysis and Optimization in Hadamard Spaces written by Miroslav Bacak and published by Walter de Gruyter GmbH & Co KG. This book was released on 2014-10-29 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past two decades, convex analysis and optimization have been developed in Hadamard spaces. This book represents a first attempt to give a systematic account on the subject. Hadamard spaces are complete geodesic spaces of nonpositive curvature. They include Hilbert spaces, Hadamard manifolds, Euclidean buildings and many other important spaces. While the role of Hadamard spaces in geometry and geometric group theory has been studied for a long time, first analytical results appeared as late as in the 1990s. Remarkably, it turns out that Hadamard spaces are appropriate for the theory of convex sets and convex functions outside of linear spaces. Since convexity underpins a large number of results in the geometry of Hadamard spaces, we believe that its systematic study is of substantial interest. Optimization methods then address various computational issues and provide us with approximation algorithms which may be useful in sciences and engineering. We present a detailed description of such an application to computational phylogenetics. The book is primarily aimed at both graduate students and researchers in analysis and optimization, but it is accessible to advanced undergraduate students as well.

The Geometry of Geodesics

Download The Geometry of Geodesics PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486154629
Total Pages : 434 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis The Geometry of Geodesics by : Herbert Busemann

Download or read book The Geometry of Geodesics written by Herbert Busemann and published by Courier Corporation. This book was released on 2012-07-12 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive approach to qualitative problems in intrinsic differential geometry, this text examines Desarguesian spaces, perpendiculars and parallels, covering spaces, the influence of the sign of the curvature on geodesics, more. 1955 edition. Includes 66 figures.

Metric Structures for Riemannian and Non-Riemannian Spaces

Download Metric Structures for Riemannian and Non-Riemannian Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817645837
Total Pages : 594 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Metric Structures for Riemannian and Non-Riemannian Spaces by : Mikhail Gromov

Download or read book Metric Structures for Riemannian and Non-Riemannian Spaces written by Mikhail Gromov and published by Springer Science & Business Media. This book was released on 2007-06-25 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an English translation of the famous "Green Book" by Lafontaine and Pansu (1979). It has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices, by Gromov on Levy's inequality, by Pansu on "quasiconvex" domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures, as well as an extensive bibliography and index round out this unique and beautiful book.

Sobolev Spaces on Metric Measure Spaces

Download Sobolev Spaces on Metric Measure Spaces PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107092345
Total Pages : 447 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Sobolev Spaces on Metric Measure Spaces by : Juha Heinonen

Download or read book Sobolev Spaces on Metric Measure Spaces written by Juha Heinonen and published by Cambridge University Press. This book was released on 2015-02-05 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.

Lipschitz Algebras

Download Lipschitz Algebras PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810238735
Total Pages : 242 pages
Book Rating : 4.2/5 (387 download)

DOWNLOAD NOW!


Book Synopsis Lipschitz Algebras by : Nik Weaver

Download or read book Lipschitz Algebras written by Nik Weaver and published by World Scientific. This book was released on 1999 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Lipschitz algebras Lp(M), for M a complete metric space, are quite analogous to the spaces C(omega) and Linfinity(X), for omega a compact Hausdorff space and X a sigma-finite measure space. Although the Lipschitz algebras have not been studied as thoroughly as these better-known cousins, it is becoming increasingly clear that they play a fundamental role in functional analysis, and are also useful in many applications, especially in the direction of metric geometry. This book gives a comprehensive treatment of (what is currently known about) the beautiful theory of these algebras.

Lectures On Finsler Geometry

Download Lectures On Finsler Geometry PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814491659
Total Pages : 323 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Lectures On Finsler Geometry by : Zhongmin Shen

Download or read book Lectures On Finsler Geometry written by Zhongmin Shen and published by World Scientific. This book was released on 2001-05-22 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1854, B Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P Finsler studied the variation problem in regular metric spaces. Around 1926, L Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world.Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern metric geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory.

Geometry of Cuts and Metrics

Download Geometry of Cuts and Metrics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642042953
Total Pages : 580 pages
Book Rating : 4.6/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Geometry of Cuts and Metrics by : Michel Marie Deza

Download or read book Geometry of Cuts and Metrics written by Michel Marie Deza and published by Springer. This book was released on 2009-11-12 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cuts and metrics are well-known objects that arise - independently, but with many deep and fascinating connections - in diverse fields: in graph theory, combinatorial optimization, geometry of numbers, combinatorial matrix theory, statistical physics, VLSI design etc. This book presents a wealth of results, from different mathematical disciplines, in a unified comprehensive manner, and establishes new and old links, which cannot be found elsewhere. It provides a unique and invaluable source for researchers and graduate students. From the Reviews: "This book is definitely a milestone in the literature of integer programming and combinatorial optimization. It draws from the Interdisciplinarity of these fields [...]. With knowledge about the relevant terms, one can enjoy special subsections without being entirely familiar with the rest of the chapter. This makes it not only an interesting research book but even a dictionary. [...] The longer one works with it, the more beautiful it becomes." Optima 56, 1997.

Advances in Metric Fixed Point Theory and Applications

Download Advances in Metric Fixed Point Theory and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9813366478
Total Pages : 503 pages
Book Rating : 4.8/5 (133 download)

DOWNLOAD NOW!


Book Synopsis Advances in Metric Fixed Point Theory and Applications by : Yeol Je Cho

Download or read book Advances in Metric Fixed Point Theory and Applications written by Yeol Je Cho and published by Springer Nature. This book was released on 2021-06-05 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT(κ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of a given function, best proximity point theory, monotone mappings in modular function spaces, fuzzy contractive mappings, ordered hyperbolic metric spaces, generalized contractions in b-metric spaces, multi-tupled fixed points, functional equations in dynamic programming and Picard operators. This book addresses the mathematical community working with methods and tools of nonlinear analysis. It also serves as a reference, source for examples and new approaches associated with fixed point theory and its applications for a wide audience including graduate students and researchers.